MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm3 Structured version   Visualization version   Unicode version

Theorem elfm3 21754
Description: An alternate formulation of elementhood in a mapping filter that requires  F to be onto. (Contributed by Jeff Hankins, 1-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l  |-  L  =  ( Y filGen B )
Assertion
Ref Expression
elfm3  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
Distinct variable groups:    x, B    x, F    x, X    x, A    x, L    x, Y

Proof of Theorem elfm3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 6120 . . . 4  |-  ( F : Y -onto-> X  -> 
( F " Y
)  =  X )
21adantl 482 . . 3  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( F " Y )  =  X )
3 fofun 6116 . . . 4  |-  ( F : Y -onto-> X  ->  Fun  F )
4 elfvdm 6220 . . . 4  |-  ( B  e.  ( fBas `  Y
)  ->  Y  e.  dom  fBas )
5 funimaexg 5975 . . . 4  |-  ( ( Fun  F  /\  Y  e.  dom  fBas )  ->  ( F " Y )  e. 
_V )
63, 4, 5syl2anr 495 . . 3  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( F " Y )  e. 
_V )
72, 6eqeltrrd 2702 . 2  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  X  e.  _V )
8 fof 6115 . . . . 5  |-  ( F : Y -onto-> X  ->  F : Y --> X )
9 elfm2.l . . . . . 6  |-  L  =  ( Y filGen B )
109elfm2 21752 . . . . 5  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( X  FilMap  F ) `
 B )  <->  ( A  C_  X  /\  E. y  e.  L  ( F " y )  C_  A
) ) )
118, 10syl3an3 1361 . . . 4  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  ( A  C_  X  /\  E. y  e.  L  ( F " y )  C_  A
) ) )
12 fgcl 21682 . . . . . . . . . . . 12  |-  ( B  e.  ( fBas `  Y
)  ->  ( Y filGen B )  e.  ( Fil `  Y ) )
139, 12syl5eqel 2705 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Y
)  ->  L  e.  ( Fil `  Y ) )
14133ad2ant2 1083 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  L  e.  ( Fil `  Y
) )
1514ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  ->  L  e.  ( Fil `  Y ) )
16 simprl 794 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
y  e.  L )
17 cnvimass 5485 . . . . . . . . . . . 12  |-  ( `' F " A ) 
C_  dom  F
18 fofn 6117 . . . . . . . . . . . . 13  |-  ( F : Y -onto-> X  ->  F  Fn  Y )
19 fndm 5990 . . . . . . . . . . . . 13  |-  ( F  Fn  Y  ->  dom  F  =  Y )
2018, 19syl 17 . . . . . . . . . . . 12  |-  ( F : Y -onto-> X  ->  dom  F  =  Y )
2117, 20syl5sseq 3653 . . . . . . . . . . 11  |-  ( F : Y -onto-> X  -> 
( `' F " A )  C_  Y
)
22213ad2ant3 1084 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( `' F " A ) 
C_  Y )
2322ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
( `' F " A )  C_  Y
)
2433ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  Fun  F )
2524ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  Fun  F )
269eleq2i 2693 . . . . . . . . . . . . . . 15  |-  ( y  e.  L  <->  y  e.  ( Y filGen B ) )
27 elfg 21675 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ( fBas `  Y
)  ->  ( y  e.  ( Y filGen B )  <-> 
( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
28273ad2ant2 1083 . . . . . . . . . . . . . . . 16  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
y  e.  ( Y
filGen B )  <->  ( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
2928adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  (
y  e.  ( Y
filGen B )  <->  ( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
3026, 29syl5bb 272 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  (
y  e.  L  <->  ( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
3130simprbda 653 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  y  C_  Y )
32 sseq2 3627 . . . . . . . . . . . . . . . . 17  |-  ( dom 
F  =  Y  -> 
( y  C_  dom  F  <-> 
y  C_  Y )
)
3332biimpar 502 . . . . . . . . . . . . . . . 16  |-  ( ( dom  F  =  Y  /\  y  C_  Y
)  ->  y  C_  dom  F )
3420, 33sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( F : Y -onto-> X  /\  y  C_  Y )  ->  y  C_  dom  F )
35343ad2antl3 1225 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  y  C_  Y )  ->  y  C_ 
dom  F )
3635adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  C_  Y )  ->  y  C_ 
dom  F )
3731, 36syldan 487 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  y  C_ 
dom  F )
38 funimass3 6333 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  y  C_ 
dom  F )  -> 
( ( F "
y )  C_  A  <->  y 
C_  ( `' F " A ) ) )
3925, 37, 38syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  (
( F " y
)  C_  A  <->  y  C_  ( `' F " A ) ) )
4039biimpd 219 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  (
( F " y
)  C_  A  ->  y 
C_  ( `' F " A ) ) )
4140impr 649 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
y  C_  ( `' F " A ) )
42 filss 21657 . . . . . . . . 9  |-  ( ( L  e.  ( Fil `  Y )  /\  (
y  e.  L  /\  ( `' F " A ) 
C_  Y  /\  y  C_  ( `' F " A ) ) )  ->  ( `' F " A )  e.  L
)
4315, 16, 23, 41, 42syl13anc 1328 . . . . . . . 8  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
( `' F " A )  e.  L
)
44 foimacnv 6154 . . . . . . . . . . 11  |-  ( ( F : Y -onto-> X  /\  A  C_  X )  ->  ( F "
( `' F " A ) )  =  A )
4544eqcomd 2628 . . . . . . . . . 10  |-  ( ( F : Y -onto-> X  /\  A  C_  X )  ->  A  =  ( F " ( `' F " A ) ) )
46453ad2antl3 1225 . . . . . . . . 9  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  A  =  ( F "
( `' F " A ) ) )
4746adantr 481 . . . . . . . 8  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  ->  A  =  ( F " ( `' F " A ) ) )
48 imaeq2 5462 . . . . . . . . . 10  |-  ( x  =  ( `' F " A )  ->  ( F " x )  =  ( F " ( `' F " A ) ) )
4948eqeq2d 2632 . . . . . . . . 9  |-  ( x  =  ( `' F " A )  ->  ( A  =  ( F " x )  <->  A  =  ( F " ( `' F " A ) ) ) )
5049rspcev 3309 . . . . . . . 8  |-  ( ( ( `' F " A )  e.  L  /\  A  =  ( F " ( `' F " A ) ) )  ->  E. x  e.  L  A  =  ( F " x ) )
5143, 47, 50syl2anc 693 . . . . . . 7  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  ->  E. x  e.  L  A  =  ( F " x ) )
5251rexlimdvaa 3032 . . . . . 6  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  ( E. y  e.  L  ( F " y ) 
C_  A  ->  E. x  e.  L  A  =  ( F " x ) ) )
5352expimpd 629 . . . . 5  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
( A  C_  X  /\  E. y  e.  L  ( F " y ) 
C_  A )  ->  E. x  e.  L  A  =  ( F " x ) ) )
54 simprr 796 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  A  =  ( F " x ) )
55 imassrn 5477 . . . . . . . . 9  |-  ( F
" x )  C_  ran  F
56 forn 6118 . . . . . . . . . . 11  |-  ( F : Y -onto-> X  ->  ran  F  =  X )
57563ad2ant3 1084 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ran  F  =  X )
5857adantr 481 . . . . . . . . 9  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  ran  F  =  X )
5955, 58syl5sseq 3653 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  ( F "
x )  C_  X
)
6054, 59eqsstrd 3639 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  A  C_  X
)
61 eqimss2 3658 . . . . . . . . 9  |-  ( A  =  ( F "
x )  ->  ( F " x )  C_  A )
62 imaeq2 5462 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( F " y )  =  ( F " x
) )
6362sseq1d 3632 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( F " y
)  C_  A  <->  ( F " x )  C_  A
) )
6463rspcev 3309 . . . . . . . . 9  |-  ( ( x  e.  L  /\  ( F " x ) 
C_  A )  ->  E. y  e.  L  ( F " y ) 
C_  A )
6561, 64sylan2 491 . . . . . . . 8  |-  ( ( x  e.  L  /\  A  =  ( F " x ) )  ->  E. y  e.  L  ( F " y ) 
C_  A )
6665adantl 482 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  E. y  e.  L  ( F " y ) 
C_  A )
6760, 66jca 554 . . . . . 6  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  ( A  C_  X  /\  E. y  e.  L  ( F "
y )  C_  A
) )
6867rexlimdvaa 3032 . . . . 5  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( E. x  e.  L  A  =  ( F " x )  ->  ( A  C_  X  /\  E. y  e.  L  ( F " y )  C_  A ) ) )
6953, 68impbid 202 . . . 4  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
( A  C_  X  /\  E. y  e.  L  ( F " y ) 
C_  A )  <->  E. x  e.  L  A  =  ( F " x ) ) )
7011, 69bitrd 268 . . 3  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
71703coml 1272 . 2  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X  /\  X  e. 
_V )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
727, 71mpd3an3 1425 1  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   fBascfbas 19734   filGencfg 19735   Filcfil 21649    FilMap cfm 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-fil 21650  df-fm 21742
This theorem is referenced by:  fmid  21764
  Copyright terms: Public domain W3C validator