MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm Structured version   Visualization version   Unicode version

Theorem elfm 21751
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
elfm  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( X  FilMap  F ) `
 B )  <->  ( A  C_  X  /\  E. x  e.  B  ( F " x )  C_  A
) ) )
Distinct variable groups:    x, B    x, C    x, F    x, X    x, A    x, Y

Proof of Theorem elfm
Dummy variables  t 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmval 21747 . . 3  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  B )  =  ( X filGen ran  ( t  e.  B  |->  ( F " t
) ) ) )
21eleq2d 2687 . 2  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( X  FilMap  F ) `
 B )  <->  A  e.  ( X filGen ran  ( t  e.  B  |->  ( F
" t ) ) ) ) )
3 eqid 2622 . . . . 5  |-  ran  (
t  e.  B  |->  ( F " t ) )  =  ran  (
t  e.  B  |->  ( F " t ) )
43fbasrn 21688 . . . 4  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y --> X  /\  X  e.  C )  ->  ran  ( t  e.  B  |->  ( F " t
) )  e.  (
fBas `  X )
)
543comr 1273 . . 3  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  ran  ( t  e.  B  |->  ( F " t
) )  e.  (
fBas `  X )
)
6 elfg 21675 . . 3  |-  ( ran  ( t  e.  B  |->  ( F " t
) )  e.  (
fBas `  X )  ->  ( A  e.  ( X filGen ran  ( t  e.  B  |->  ( F
" t ) ) )  <->  ( A  C_  X  /\  E. y  e. 
ran  ( t  e.  B  |->  ( F "
t ) ) y 
C_  A ) ) )
75, 6syl 17 . 2  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( X filGen ran  ( t  e.  B  |->  ( F
" t ) ) )  <->  ( A  C_  X  /\  E. y  e. 
ran  ( t  e.  B  |->  ( F "
t ) ) y 
C_  A ) ) )
8 simpr 477 . . . . . 6  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  x  e.  B )
9 eqid 2622 . . . . . 6  |-  ( F
" x )  =  ( F " x
)
10 imaeq2 5462 . . . . . . . 8  |-  ( t  =  x  ->  ( F " t )  =  ( F " x
) )
1110eqeq2d 2632 . . . . . . 7  |-  ( t  =  x  ->  (
( F " x
)  =  ( F
" t )  <->  ( F " x )  =  ( F " x ) ) )
1211rspcev 3309 . . . . . 6  |-  ( ( x  e.  B  /\  ( F " x )  =  ( F "
x ) )  ->  E. t  e.  B  ( F " x )  =  ( F "
t ) )
138, 9, 12sylancl 694 . . . . 5  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  E. t  e.  B  ( F " x )  =  ( F " t ) )
14 simpl1 1064 . . . . . . 7  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  X  e.  C )
15 imassrn 5477 . . . . . . . 8  |-  ( F
" x )  C_  ran  F
16 frn 6053 . . . . . . . . . 10  |-  ( F : Y --> X  ->  ran  F  C_  X )
17163ad2ant3 1084 . . . . . . . . 9  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  ran  F  C_  X )
1817adantr 481 . . . . . . . 8  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ran  F  C_  X )
1915, 18syl5ss 3614 . . . . . . 7  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ( F " x )  C_  X
)
2014, 19ssexd 4805 . . . . . 6  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ( F " x )  e.  _V )
21 eqid 2622 . . . . . . 7  |-  ( t  e.  B  |->  ( F
" t ) )  =  ( t  e.  B  |->  ( F "
t ) )
2221elrnmpt 5372 . . . . . 6  |-  ( ( F " x )  e.  _V  ->  (
( F " x
)  e.  ran  (
t  e.  B  |->  ( F " t ) )  <->  E. t  e.  B  ( F " x )  =  ( F "
t ) ) )
2320, 22syl 17 . . . . 5  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ( ( F " x )  e. 
ran  ( t  e.  B  |->  ( F "
t ) )  <->  E. t  e.  B  ( F " x )  =  ( F " t ) ) )
2413, 23mpbird 247 . . . 4  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  x  e.  B
)  ->  ( F " x )  e.  ran  ( t  e.  B  |->  ( F " t
) ) )
2510cbvmptv 4750 . . . . . . 7  |-  ( t  e.  B  |->  ( F
" t ) )  =  ( x  e.  B  |->  ( F "
x ) )
2625elrnmpt 5372 . . . . . 6  |-  ( y  e.  ran  ( t  e.  B  |->  ( F
" t ) )  ->  ( y  e. 
ran  ( t  e.  B  |->  ( F "
t ) )  <->  E. x  e.  B  y  =  ( F " x ) ) )
2726ibi 256 . . . . 5  |-  ( y  e.  ran  ( t  e.  B  |->  ( F
" t ) )  ->  E. x  e.  B  y  =  ( F " x ) )
2827adantl 482 . . . 4  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  y  e.  ran  ( t  e.  B  |->  ( F " t
) ) )  ->  E. x  e.  B  y  =  ( F " x ) )
29 simpr 477 . . . . 5  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  y  =  ( F " x ) )  ->  y  =  ( F " x ) )
3029sseq1d 3632 . . . 4  |-  ( ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  y  =  ( F " x ) )  ->  ( y  C_  A  <->  ( F "
x )  C_  A
) )
3124, 28, 30rexxfrd 4881 . . 3  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( E. y  e. 
ran  ( t  e.  B  |->  ( F "
t ) ) y 
C_  A  <->  E. x  e.  B  ( F " x )  C_  A
) )
3231anbi2d 740 . 2  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( A  C_  X  /\  E. y  e. 
ran  ( t  e.  B  |->  ( F "
t ) ) y 
C_  A )  <->  ( A  C_  X  /\  E. x  e.  B  ( F " x )  C_  A
) ) )
332, 7, 323bitrd 294 1  |-  ( ( X  e.  C  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( X  FilMap  F ) `
 B )  <->  ( A  C_  X  /\  E. x  e.  B  ( F " x )  C_  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   fBascfbas 19734   filGencfg 19735    FilMap cfm 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-fm 21742
This theorem is referenced by:  elfm2  21752  fmfg  21753  rnelfm  21757  fmfnfmlem1  21758  fmfnfm  21762  fmco  21765  flfnei  21795  isflf  21797  isfcf  21838  filnetlem4  32376
  Copyright terms: Public domain W3C validator