MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval3 Structured version   Visualization version   Unicode version

Theorem alephval3 8933
Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.)
Assertion
Ref Expression
alephval3  |-  ( A  e.  On  ->  ( aleph `  A )  = 
|^| { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )
Distinct variable group:    x, y, A

Proof of Theorem alephval3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 alephcard 8893 . . . 4  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )
21a1i 11 . . 3  |-  ( A  e.  On  ->  ( card `  ( aleph `  A
) )  =  (
aleph `  A ) )
3 alephgeom 8905 . . . 4  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
43biimpi 206 . . 3  |-  ( A  e.  On  ->  om  C_  ( aleph `  A ) )
5 alephord2i 8900 . . . . 5  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
6 elirr 8505 . . . . . . 7  |-  -.  ( aleph `  y )  e.  ( aleph `  y )
7 eleq2 2690 . . . . . . 7  |-  ( (
aleph `  A )  =  ( aleph `  y )  ->  ( ( aleph `  y
)  e.  ( aleph `  A )  <->  ( aleph `  y )  e.  (
aleph `  y ) ) )
86, 7mtbiri 317 . . . . . 6  |-  ( (
aleph `  A )  =  ( aleph `  y )  ->  -.  ( aleph `  y
)  e.  ( aleph `  A ) )
98con2i 134 . . . . 5  |-  ( (
aleph `  y )  e.  ( aleph `  A )  ->  -.  ( aleph `  A
)  =  ( aleph `  y ) )
105, 9syl6 35 . . . 4  |-  ( A  e.  On  ->  (
y  e.  A  ->  -.  ( aleph `  A )  =  ( aleph `  y
) ) )
1110ralrimiv 2965 . . 3  |-  ( A  e.  On  ->  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y )
)
12 fvex 6201 . . . 4  |-  ( aleph `  A )  e.  _V
13 fveq2 6191 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  ( card `  x )  =  (
card `  ( aleph `  A
) ) )
14 id 22 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  x  =  ( aleph `  A )
)
1513, 14eqeq12d 2637 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( ( card `  x )  =  x  <->  ( card `  ( aleph `  A ) )  =  ( aleph `  A
) ) )
16 sseq2 3627 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( om  C_  x  <->  om  C_  ( aleph `  A ) ) )
17 eqeq1 2626 . . . . . . 7  |-  ( x  =  ( aleph `  A
)  ->  ( x  =  ( aleph `  y
)  <->  ( aleph `  A
)  =  ( aleph `  y ) ) )
1817notbid 308 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  ( -.  x  =  ( aleph `  y )  <->  -.  ( aleph `  A )  =  ( aleph `  y )
) )
1918ralbidv 2986 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( A. y  e.  A  -.  x  =  ( aleph `  y )  <->  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y )
) )
2015, 16, 193anbi123d 1399 . . . 4  |-  ( x  =  ( aleph `  A
)  ->  ( (
( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) )  <-> 
( ( card `  ( aleph `  A ) )  =  ( aleph `  A
)  /\  om  C_  ( aleph `  A )  /\  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y
) ) ) )
2112, 20elab 3350 . . 3  |-  ( (
aleph `  A )  e. 
{ x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  <->  ( ( card `  ( aleph `  A
) )  =  (
aleph `  A )  /\  om  C_  ( aleph `  A )  /\  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y
) ) )
222, 4, 11, 21syl3anbrc 1246 . 2  |-  ( A  e.  On  ->  ( aleph `  A )  e. 
{ x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )
23 cardalephex 8913 . . . . . . . . . 10  |-  ( om  C_  z  ->  ( (
card `  z )  =  z  <->  E. y  e.  On  z  =  ( aleph `  y ) ) )
2423biimpac 503 . . . . . . . . 9  |-  ( ( ( card `  z
)  =  z  /\  om  C_  z )  ->  E. y  e.  On  z  =  (
aleph `  y ) )
25 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( aleph `  y
)  ->  ( z  e.  ( aleph `  A )  <->  (
aleph `  y )  e.  ( aleph `  A )
) )
26 alephord2 8899 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( y  e.  A  <->  (
aleph `  y )  e.  ( aleph `  A )
) )
2726bicomd 213 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( ( aleph `  y
)  e.  ( aleph `  A )  <->  y  e.  A ) )
2825, 27sylan9bbr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  ( z  e.  ( aleph `  A )  <->  y  e.  A ) )
2928biimpcd 239 . . . . . . . . . . . . . 14  |-  ( z  e.  ( aleph `  A
)  ->  ( (
( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  y  e.  A
) )
30 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  z  =  (
aleph `  y ) )
3130a1i 11 . . . . . . . . . . . . . 14  |-  ( z  e.  ( aleph `  A
)  ->  ( (
( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  z  =  (
aleph `  y ) ) )
3229, 31jcad 555 . . . . . . . . . . . . 13  |-  ( z  e.  ( aleph `  A
)  ->  ( (
( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  ( y  e.  A  /\  z  =  ( aleph `  y )
) ) )
3332exp4c 636 . . . . . . . . . . . 12  |-  ( z  e.  ( aleph `  A
)  ->  ( y  e.  On  ->  ( A  e.  On  ->  ( z  =  ( aleph `  y
)  ->  ( y  e.  A  /\  z  =  ( aleph `  y
) ) ) ) ) )
3433com3r 87 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
z  e.  ( aleph `  A )  ->  (
y  e.  On  ->  ( z  =  ( aleph `  y )  ->  (
y  e.  A  /\  z  =  ( aleph `  y ) ) ) ) ) )
3534imp4b 613 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  -> 
( ( y  e.  On  /\  z  =  ( aleph `  y )
)  ->  ( y  e.  A  /\  z  =  ( aleph `  y
) ) ) )
3635reximdv2 3014 . . . . . . . . 9  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  -> 
( E. y  e.  On  z  =  (
aleph `  y )  ->  E. y  e.  A  z  =  ( aleph `  y ) ) )
3724, 36syl5 34 . . . . . . . 8  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  -> 
( ( ( card `  z )  =  z  /\  om  C_  z
)  ->  E. y  e.  A  z  =  ( aleph `  y )
) )
3837imp 445 . . . . . . 7  |-  ( ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  /\  ( ( card `  z
)  =  z  /\  om  C_  z ) )  ->  E. y  e.  A  z  =  ( aleph `  y ) )
39 dfrex2 2996 . . . . . . 7  |-  ( E. y  e.  A  z  =  ( aleph `  y
)  <->  -.  A. y  e.  A  -.  z  =  ( aleph `  y
) )
4038, 39sylib 208 . . . . . 6  |-  ( ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  /\  ( ( card `  z
)  =  z  /\  om  C_  z ) )  ->  -.  A. y  e.  A  -.  z  =  ( aleph `  y ) )
41 nan 604 . . . . . 6  |-  ( ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  ->  -.  ( ( ( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )  <->  ( (
( A  e.  On  /\  z  e.  ( aleph `  A ) )  /\  ( ( card `  z
)  =  z  /\  om  C_  z ) )  ->  -.  A. y  e.  A  -.  z  =  ( aleph `  y ) ) )
4240, 41mpbir 221 . . . . 5  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  ->  -.  ( ( ( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
4342ex 450 . . . 4  |-  ( A  e.  On  ->  (
z  e.  ( aleph `  A )  ->  -.  ( ( ( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) ) )
44 vex 3203 . . . . . . 7  |-  z  e. 
_V
45 fveq2 6191 . . . . . . . . 9  |-  ( x  =  z  ->  ( card `  x )  =  ( card `  z
) )
46 id 22 . . . . . . . . 9  |-  ( x  =  z  ->  x  =  z )
4745, 46eqeq12d 2637 . . . . . . . 8  |-  ( x  =  z  ->  (
( card `  x )  =  x  <->  ( card `  z
)  =  z ) )
48 sseq2 3627 . . . . . . . 8  |-  ( x  =  z  ->  ( om  C_  x  <->  om  C_  z
) )
49 eqeq1 2626 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  =  ( aleph `  y )  <->  z  =  ( aleph `  y )
) )
5049notbid 308 . . . . . . . . 9  |-  ( x  =  z  ->  ( -.  x  =  ( aleph `  y )  <->  -.  z  =  ( aleph `  y
) ) )
5150ralbidv 2986 . . . . . . . 8  |-  ( x  =  z  ->  ( A. y  e.  A  -.  x  =  ( aleph `  y )  <->  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5247, 48, 513anbi123d 1399 . . . . . . 7  |-  ( x  =  z  ->  (
( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) )  <->  ( ( card `  z )  =  z  /\  om  C_  z  /\  A. y  e.  A  -.  z  =  ( aleph `  y ) ) ) )
5344, 52elab 3350 . . . . . 6  |-  ( z  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  <->  ( ( card `  z )  =  z  /\  om  C_  z  /\  A. y  e.  A  -.  z  =  ( aleph `  y ) ) )
54 df-3an 1039 . . . . . 6  |-  ( ( ( card `  z
)  =  z  /\  om  C_  z  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) )  <->  ( (
( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5553, 54bitri 264 . . . . 5  |-  ( z  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  <->  ( (
( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5655notbii 310 . . . 4  |-  ( -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  <->  -.  ( (
( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5743, 56syl6ibr 242 . . 3  |-  ( A  e.  On  ->  (
z  e.  ( aleph `  A )  ->  -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } ) )
5857ralrimiv 2965 . 2  |-  ( A  e.  On  ->  A. z  e.  ( aleph `  A )  -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } )
59 cardon 8770 . . . . . 6  |-  ( card `  x )  e.  On
60 eleq1 2689 . . . . . 6  |-  ( (
card `  x )  =  x  ->  ( (
card `  x )  e.  On  <->  x  e.  On ) )
6159, 60mpbii 223 . . . . 5  |-  ( (
card `  x )  =  x  ->  x  e.  On )
62613ad2ant1 1082 . . . 4  |-  ( ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) )  ->  x  e.  On )
6362abssi 3677 . . 3  |-  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  C_  On
64 oneqmini 5776 . . 3  |-  ( { x  |  ( (
card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  C_  On  ->  ( ( ( aleph `  A
)  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } )  ->  ( aleph `  A )  = 
|^| { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } ) )
6563, 64ax-mp 5 . 2  |-  ( ( ( aleph `  A )  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )  ->  ( aleph `  A
)  =  |^| { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } )
6622, 58, 65syl2anc 693 1  |-  ( A  e.  On  ->  ( aleph `  A )  = 
|^| { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    C_ wss 3574   |^|cint 4475   Oncon0 5723   ` cfv 5888   omcom 7065   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator