Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankeq1o Structured version   Visualization version   Unicode version

Theorem rankeq1o 32278
Description: The only set with rank  1o is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015.)
Assertion
Ref Expression
rankeq1o  |-  ( (
rank `  A )  =  1o  <->  A  =  { (/)
} )

Proof of Theorem rankeq1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 7575 . . . . . . 7  |-  1o  =/=  (/)
2 neeq1 2856 . . . . . . 7  |-  ( (
rank `  A )  =  1o  ->  ( (
rank `  A )  =/=  (/)  <->  1o  =/=  (/) ) )
31, 2mpbiri 248 . . . . . 6  |-  ( (
rank `  A )  =  1o  ->  ( rank `  A )  =/=  (/) )
43neneqd 2799 . . . . 5  |-  ( (
rank `  A )  =  1o  ->  -.  ( rank `  A )  =  (/) )
5 fvprc 6185 . . . . 5  |-  ( -.  A  e.  _V  ->  (
rank `  A )  =  (/) )
64, 5nsyl2 142 . . . 4  |-  ( (
rank `  A )  =  1o  ->  A  e. 
_V )
7 fveq2 6191 . . . . . . 7  |-  ( x  =  A  ->  ( rank `  x )  =  ( rank `  A
) )
87eqeq1d 2624 . . . . . 6  |-  ( x  =  A  ->  (
( rank `  x )  =  1o  <->  ( rank `  A
)  =  1o ) )
9 eqeq1 2626 . . . . . 6  |-  ( x  =  A  ->  (
x  =  1o  <->  A  =  1o ) )
108, 9imbi12d 334 . . . . 5  |-  ( x  =  A  ->  (
( ( rank `  x
)  =  1o  ->  x  =  1o )  <->  ( ( rank `  A )  =  1o  ->  A  =  1o ) ) )
11 neeq1 2856 . . . . . . . 8  |-  ( (
rank `  x )  =  1o  ->  ( (
rank `  x )  =/=  (/)  <->  1o  =/=  (/) ) )
121, 11mpbiri 248 . . . . . . 7  |-  ( (
rank `  x )  =  1o  ->  ( rank `  x )  =/=  (/) )
13 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
1413rankeq0 8724 . . . . . . . 8  |-  ( x  =  (/)  <->  ( rank `  x
)  =  (/) )
1514necon3bii 2846 . . . . . . 7  |-  ( x  =/=  (/)  <->  ( rank `  x
)  =/=  (/) )
1612, 15sylibr 224 . . . . . 6  |-  ( (
rank `  x )  =  1o  ->  x  =/=  (/) )
1713rankval 8679 . . . . . . . 8  |-  ( rank `  x )  =  |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }
1817eqeq1i 2627 . . . . . . 7  |-  ( (
rank `  x )  =  1o  <->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  =  1o )
19 ssrab2 3687 . . . . . . . . . . 11  |-  { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  C_  On
20 elirr 8505 . . . . . . . . . . . . . 14  |-  -.  1o  e.  1o
21 df1o2 7572 . . . . . . . . . . . . . . . 16  |-  1o  =  { (/) }
22 p0ex 4853 . . . . . . . . . . . . . . . 16  |-  { (/) }  e.  _V
2321, 22eqeltri 2697 . . . . . . . . . . . . . . 15  |-  1o  e.  _V
24 id 22 . . . . . . . . . . . . . . 15  |-  ( _V  =  1o  ->  _V  =  1o )
2523, 24syl5eleq 2707 . . . . . . . . . . . . . 14  |-  ( _V  =  1o  ->  1o  e.  1o )
2620, 25mto 188 . . . . . . . . . . . . 13  |-  -.  _V  =  1o
27 inteq 4478 . . . . . . . . . . . . . . 15  |-  ( { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  (/)  ->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  =  |^| (/) )
28 int0 4490 . . . . . . . . . . . . . . 15  |-  |^| (/)  =  _V
2927, 28syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  (/)  ->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  =  _V )
3029eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  (/)  ->  ( |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  1o  <->  _V  =  1o ) )
3126, 30mtbiri 317 . . . . . . . . . . . 12  |-  ( { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  (/)  ->  -.  |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  1o )
3231necon2ai 2823 . . . . . . . . . . 11  |-  ( |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  1o  ->  { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  =/=  (/) )
33 onint 6995 . . . . . . . . . . 11  |-  ( ( { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  C_  On  /\  {
y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =/=  (/) )  ->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  e.  { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) } )
3419, 32, 33sylancr 695 . . . . . . . . . 10  |-  ( |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  1o  ->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  e.  { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) } )
35 eleq1 2689 . . . . . . . . . 10  |-  ( |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  1o  ->  ( |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  e.  { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  <->  1o  e.  { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) } ) )
3634, 35mpbid 222 . . . . . . . . 9  |-  ( |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  1o  ->  1o  e.  { y  e.  On  |  x  e.  ( R1 `  suc  y ) } )
37 suceq 5790 . . . . . . . . . . . . 13  |-  ( y  =  1o  ->  suc  y  =  suc  1o )
3837fveq2d 6195 . . . . . . . . . . . 12  |-  ( y  =  1o  ->  ( R1 `  suc  y )  =  ( R1 `  suc  1o ) )
39 df-1o 7560 . . . . . . . . . . . . . . . . 17  |-  1o  =  suc  (/)
4039fveq2i 6194 . . . . . . . . . . . . . . . 16  |-  ( R1
`  1o )  =  ( R1 `  suc  (/) )
41 0elon 5778 . . . . . . . . . . . . . . . . 17  |-  (/)  e.  On
42 r1suc 8633 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  On  ->  ( R1 ` 
suc  (/) )  =  ~P ( R1 `  (/) ) )
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( R1
`  suc  (/) )  =  ~P ( R1 `  (/) )
44 r10 8631 . . . . . . . . . . . . . . . . 17  |-  ( R1
`  (/) )  =  (/)
4544pweqi 4162 . . . . . . . . . . . . . . . 16  |-  ~P ( R1 `  (/) )  =  ~P (/)
4640, 43, 453eqtri 2648 . . . . . . . . . . . . . . 15  |-  ( R1
`  1o )  =  ~P (/)
4746pweqi 4162 . . . . . . . . . . . . . 14  |-  ~P ( R1 `  1o )  =  ~P ~P (/)
48 pw0 4343 . . . . . . . . . . . . . . 15  |-  ~P (/)  =  { (/)
}
4948pweqi 4162 . . . . . . . . . . . . . 14  |-  ~P ~P (/)  =  ~P { (/) }
50 pwpw0 4344 . . . . . . . . . . . . . 14  |-  ~P { (/)
}  =  { (/) ,  { (/) } }
5147, 49, 503eqtrri 2649 . . . . . . . . . . . . 13  |-  { (/) ,  { (/) } }  =  ~P ( R1 `  1o )
52 1on 7567 . . . . . . . . . . . . . 14  |-  1o  e.  On
53 r1suc 8633 . . . . . . . . . . . . . 14  |-  ( 1o  e.  On  ->  ( R1 `  suc  1o )  =  ~P ( R1
`  1o ) )
5452, 53ax-mp 5 . . . . . . . . . . . . 13  |-  ( R1
`  suc  1o )  =  ~P ( R1 `  1o )
5551, 54eqtr4i 2647 . . . . . . . . . . . 12  |-  { (/) ,  { (/) } }  =  ( R1 `  suc  1o )
5638, 55syl6eqr 2674 . . . . . . . . . . 11  |-  ( y  =  1o  ->  ( R1 `  suc  y )  =  { (/) ,  { (/)
} } )
5756eleq2d 2687 . . . . . . . . . 10  |-  ( y  =  1o  ->  (
x  e.  ( R1
`  suc  y )  <->  x  e.  { (/) ,  { (/)
} } ) )
5857elrab 3363 . . . . . . . . 9  |-  ( 1o  e.  { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  <->  ( 1o  e.  On  /\  x  e. 
{ (/) ,  { (/) } } ) )
5936, 58sylib 208 . . . . . . . 8  |-  ( |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  1o  ->  ( 1o  e.  On  /\  x  e.  { (/) ,  { (/) } } ) )
6013elpr 4198 . . . . . . . . . 10  |-  ( x  e.  { (/) ,  { (/)
} }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
61 df-ne 2795 . . . . . . . . . . . 12  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
62 orel1 397 . . . . . . . . . . . 12  |-  ( -.  x  =  (/)  ->  (
( x  =  (/)  \/  x  =  { (/) } )  ->  x  =  { (/) } ) )
6361, 62sylbi 207 . . . . . . . . . . 11  |-  ( x  =/=  (/)  ->  ( (
x  =  (/)  \/  x  =  { (/) } )  ->  x  =  { (/) } ) )
64 eqeq2 2633 . . . . . . . . . . . . 13  |-  ( x  =  { (/) }  ->  ( 1o  =  x  <->  1o  =  { (/) } ) )
6521, 64mpbiri 248 . . . . . . . . . . . 12  |-  ( x  =  { (/) }  ->  1o  =  x )
6665eqcomd 2628 . . . . . . . . . . 11  |-  ( x  =  { (/) }  ->  x  =  1o )
6763, 66syl6com 37 . . . . . . . . . 10  |-  ( ( x  =  (/)  \/  x  =  { (/) } )  -> 
( x  =/=  (/)  ->  x  =  1o ) )
6860, 67sylbi 207 . . . . . . . . 9  |-  ( x  e.  { (/) ,  { (/)
} }  ->  (
x  =/=  (/)  ->  x  =  1o ) )
6968adantl 482 . . . . . . . 8  |-  ( ( 1o  e.  On  /\  x  e.  { (/) ,  { (/)
} } )  -> 
( x  =/=  (/)  ->  x  =  1o ) )
7059, 69syl 17 . . . . . . 7  |-  ( |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =  1o  ->  (
x  =/=  (/)  ->  x  =  1o ) )
7118, 70sylbi 207 . . . . . 6  |-  ( (
rank `  x )  =  1o  ->  ( x  =/=  (/)  ->  x  =  1o ) )
7216, 71mpd 15 . . . . 5  |-  ( (
rank `  x )  =  1o  ->  x  =  1o )
7310, 72vtoclg 3266 . . . 4  |-  ( A  e.  _V  ->  (
( rank `  A )  =  1o  ->  A  =  1o ) )
746, 73mpcom 38 . . 3  |-  ( (
rank `  A )  =  1o  ->  A  =  1o )
75 fveq2 6191 . . . 4  |-  ( A  =  1o  ->  ( rank `  A )  =  ( rank `  1o ) )
76 r111 8638 . . . . . . 7  |-  R1 : On
-1-1-> _V
77 f1dm 6105 . . . . . . 7  |-  ( R1 : On -1-1-> _V  ->  dom 
R1  =  On )
7876, 77ax-mp 5 . . . . . 6  |-  dom  R1  =  On
7952, 78eleqtrri 2700 . . . . 5  |-  1o  e.  dom  R1
80 rankonid 8692 . . . . 5  |-  ( 1o  e.  dom  R1  <->  ( rank `  1o )  =  1o )
8179, 80mpbi 220 . . . 4  |-  ( rank `  1o )  =  1o
8275, 81syl6eq 2672 . . 3  |-  ( A  =  1o  ->  ( rank `  A )  =  1o )
8374, 82impbii 199 . 2  |-  ( (
rank `  A )  =  1o  <->  A  =  1o )
8421eqeq2i 2634 . 2  |-  ( A  =  1o  <->  A  =  { (/) } )
8583, 84bitri 264 1  |-  ( (
rank `  A )  =  1o  <->  A  =  { (/)
} )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   |^|cint 4475   dom cdm 5114   Oncon0 5723   suc csuc 5725   -1-1->wf1 5885   ` cfv 5888   1oc1o 7553   R1cr1 8625   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-r1 8627  df-rank 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator