| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elnlfn | Structured version Visualization version Unicode version | ||
| Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elnlfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlfnval 28740 |
. . . . . 6
| |
| 2 | cnvimass 5485 |
. . . . . 6
| |
| 3 | 1, 2 | syl6eqss 3655 |
. . . . 5
|
| 4 | fdm 6051 |
. . . . 5
| |
| 5 | 3, 4 | sseqtrd 3641 |
. . . 4
|
| 6 | 5 | sseld 3602 |
. . 3
|
| 7 | 6 | pm4.71rd 667 |
. 2
|
| 8 | 1 | eleq2d 2687 |
. . . . 5
|
| 9 | 8 | adantr 481 |
. . . 4
|
| 10 | ffn 6045 |
. . . . 5
| |
| 11 | eleq1 2689 |
. . . . . . . 8
| |
| 12 | fveq2 6191 |
. . . . . . . . 9
| |
| 13 | 12 | eqeq1d 2624 |
. . . . . . . 8
|
| 14 | 11, 13 | bibi12d 335 |
. . . . . . 7
|
| 15 | 14 | imbi2d 330 |
. . . . . 6
|
| 16 | fnbrfvb 6236 |
. . . . . . . 8
| |
| 17 | 0cn 10032 |
. . . . . . . . 9
| |
| 18 | vex 3203 |
. . . . . . . . . 10
| |
| 19 | 18 | eliniseg 5494 |
. . . . . . . . 9
|
| 20 | 17, 19 | ax-mp 5 |
. . . . . . . 8
|
| 21 | 16, 20 | syl6rbbr 279 |
. . . . . . 7
|
| 22 | 21 | expcom 451 |
. . . . . 6
|
| 23 | 15, 22 | vtoclga 3272 |
. . . . 5
|
| 24 | 10, 23 | mpan9 486 |
. . . 4
|
| 25 | 9, 24 | bitrd 268 |
. . 3
|
| 26 | 25 | pm5.32da 673 |
. 2
|
| 27 | 7, 26 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-mulcl 9998 ax-i2m1 10004 ax-hilex 27856 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-nlfn 28705 |
| This theorem is referenced by: elnlfn2 28788 nlelshi 28919 nlelchi 28920 riesz3i 28921 |
| Copyright terms: Public domain | W3C validator |