HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelshi Structured version   Visualization version   Unicode version

Theorem nlelshi 28919
Description: The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nlelsh.1  |-  T  e. 
LinFn
Assertion
Ref Expression
nlelshi  |-  ( null `  T )  e.  SH

Proof of Theorem nlelshi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 27860 . . 3  |-  0h  e.  ~H
2 nlelsh.1 . . . 4  |-  T  e. 
LinFn
32lnfn0i 28901 . . 3  |-  ( T `
 0h )  =  0
42lnfnfi 28900 . . . 4  |-  T : ~H
--> CC
5 elnlfn 28787 . . . 4  |-  ( T : ~H --> CC  ->  ( 0h  e.  ( null `  T )  <->  ( 0h  e.  ~H  /\  ( T `
 0h )  =  0 ) ) )
64, 5ax-mp 5 . . 3  |-  ( 0h  e.  ( null `  T
)  <->  ( 0h  e.  ~H  /\  ( T `  0h )  =  0
) )
71, 3, 6mpbir2an 955 . 2  |-  0h  e.  ( null `  T )
8 nlfnval 28740 . . . . . . . . . 10  |-  ( T : ~H --> CC  ->  (
null `  T )  =  ( `' T " { 0 } ) )
94, 8ax-mp 5 . . . . . . . . 9  |-  ( null `  T )  =  ( `' T " { 0 } )
10 cnvimass 5485 . . . . . . . . 9  |-  ( `' T " { 0 } )  C_  dom  T
119, 10eqsstri 3635 . . . . . . . 8  |-  ( null `  T )  C_  dom  T
124fdmi 6052 . . . . . . . 8  |-  dom  T  =  ~H
1311, 12sseqtri 3637 . . . . . . 7  |-  ( null `  T )  C_  ~H
1413sseli 3599 . . . . . 6  |-  ( x  e.  ( null `  T
)  ->  x  e.  ~H )
1513sseli 3599 . . . . . 6  |-  ( y  e.  ( null `  T
)  ->  y  e.  ~H )
16 hvaddcl 27869 . . . . . 6  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  e.  ~H )
1714, 15, 16syl2an 494 . . . . 5  |-  ( ( x  e.  ( null `  T )  /\  y  e.  ( null `  T
) )  ->  (
x  +h  y )  e.  ~H )
182lnfnaddi 28902 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( T `  (
x  +h  y ) )  =  ( ( T `  x )  +  ( T `  y ) ) )
1914, 15, 18syl2an 494 . . . . . . 7  |-  ( ( x  e.  ( null `  T )  /\  y  e.  ( null `  T
) )  ->  ( T `  ( x  +h  y ) )  =  ( ( T `  x )  +  ( T `  y ) ) )
20 elnlfn 28787 . . . . . . . . . 10  |-  ( T : ~H --> CC  ->  ( x  e.  ( null `  T )  <->  ( x  e.  ~H  /\  ( T `
 x )  =  0 ) ) )
214, 20ax-mp 5 . . . . . . . . 9  |-  ( x  e.  ( null `  T
)  <->  ( x  e. 
~H  /\  ( T `  x )  =  0 ) )
2221simprbi 480 . . . . . . . 8  |-  ( x  e.  ( null `  T
)  ->  ( T `  x )  =  0 )
23 elnlfn 28787 . . . . . . . . . 10  |-  ( T : ~H --> CC  ->  ( y  e.  ( null `  T )  <->  ( y  e.  ~H  /\  ( T `
 y )  =  0 ) ) )
244, 23ax-mp 5 . . . . . . . . 9  |-  ( y  e.  ( null `  T
)  <->  ( y  e. 
~H  /\  ( T `  y )  =  0 ) )
2524simprbi 480 . . . . . . . 8  |-  ( y  e.  ( null `  T
)  ->  ( T `  y )  =  0 )
2622, 25oveqan12d 6669 . . . . . . 7  |-  ( ( x  e.  ( null `  T )  /\  y  e.  ( null `  T
) )  ->  (
( T `  x
)  +  ( T `
 y ) )  =  ( 0  +  0 ) )
2719, 26eqtrd 2656 . . . . . 6  |-  ( ( x  e.  ( null `  T )  /\  y  e.  ( null `  T
) )  ->  ( T `  ( x  +h  y ) )  =  ( 0  +  0 ) )
28 00id 10211 . . . . . 6  |-  ( 0  +  0 )  =  0
2927, 28syl6eq 2672 . . . . 5  |-  ( ( x  e.  ( null `  T )  /\  y  e.  ( null `  T
) )  ->  ( T `  ( x  +h  y ) )  =  0 )
30 elnlfn 28787 . . . . . 6  |-  ( T : ~H --> CC  ->  ( ( x  +h  y
)  e.  ( null `  T )  <->  ( (
x  +h  y )  e.  ~H  /\  ( T `  ( x  +h  y ) )  =  0 ) ) )
314, 30ax-mp 5 . . . . 5  |-  ( ( x  +h  y )  e.  ( null `  T
)  <->  ( ( x  +h  y )  e. 
~H  /\  ( T `  ( x  +h  y
) )  =  0 ) )
3217, 29, 31sylanbrc 698 . . . 4  |-  ( ( x  e.  ( null `  T )  /\  y  e.  ( null `  T
) )  ->  (
x  +h  y )  e.  ( null `  T
) )
3332rgen2 2975 . . 3  |-  A. x  e.  ( null `  T
) A. y  e.  ( null `  T
) ( x  +h  y )  e.  (
null `  T )
34 hvmulcl 27870 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
3515, 34sylan2 491 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  ( null `  T ) )  -> 
( x  .h  y
)  e.  ~H )
362lnfnmuli 28903 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( T `  (
x  .h  y ) )  =  ( x  x.  ( T `  y ) ) )
3715, 36sylan2 491 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  ( null `  T ) )  -> 
( T `  (
x  .h  y ) )  =  ( x  x.  ( T `  y ) ) )
3825oveq2d 6666 . . . . . . 7  |-  ( y  e.  ( null `  T
)  ->  ( x  x.  ( T `  y
) )  =  ( x  x.  0 ) )
39 mul01 10215 . . . . . . 7  |-  ( x  e.  CC  ->  (
x  x.  0 )  =  0 )
4038, 39sylan9eqr 2678 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  ( null `  T ) )  -> 
( x  x.  ( T `  y )
)  =  0 )
4137, 40eqtrd 2656 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  ( null `  T ) )  -> 
( T `  (
x  .h  y ) )  =  0 )
42 elnlfn 28787 . . . . . 6  |-  ( T : ~H --> CC  ->  ( ( x  .h  y
)  e.  ( null `  T )  <->  ( (
x  .h  y )  e.  ~H  /\  ( T `  ( x  .h  y ) )  =  0 ) ) )
434, 42ax-mp 5 . . . . 5  |-  ( ( x  .h  y )  e.  ( null `  T
)  <->  ( ( x  .h  y )  e. 
~H  /\  ( T `  ( x  .h  y
) )  =  0 ) )
4435, 41, 43sylanbrc 698 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  ( null `  T ) )  -> 
( x  .h  y
)  e.  ( null `  T ) )
4544rgen2 2975 . . 3  |-  A. x  e.  CC  A. y  e.  ( null `  T
) ( x  .h  y )  e.  (
null `  T )
4633, 45pm3.2i 471 . 2  |-  ( A. x  e.  ( null `  T ) A. y  e.  ( null `  T
) ( x  +h  y )  e.  (
null `  T )  /\  A. x  e.  CC  A. y  e.  ( null `  T ) ( x  .h  y )  e.  ( null `  T
) )
47 issh3 28076 . . 3  |-  ( (
null `  T )  C_ 
~H  ->  ( ( null `  T )  e.  SH  <->  ( 0h  e.  ( null `  T )  /\  ( A. x  e.  ( null `  T ) A. y  e.  ( null `  T ) ( x  +h  y )  e.  ( null `  T
)  /\  A. x  e.  CC  A. y  e.  ( null `  T
) ( x  .h  y )  e.  (
null `  T )
) ) ) )
4813, 47ax-mp 5 . 2  |-  ( (
null `  T )  e.  SH  <->  ( 0h  e.  ( null `  T )  /\  ( A. x  e.  ( null `  T
) A. y  e.  ( null `  T
) ( x  +h  y )  e.  (
null `  T )  /\  A. x  e.  CC  A. y  e.  ( null `  T ) ( x  .h  y )  e.  ( null `  T
) ) ) )
497, 46, 48mpbir2an 955 1  |-  ( null `  T )  e.  SH
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {csn 4177   `'ccnv 5113   dom cdm 5114   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939    x. cmul 9941   ~Hchil 27776    +h cva 27777    .h csm 27778   0hc0v 27781   SHcsh 27785   nullcnl 27809   LinFnclf 27811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-sh 28064  df-nlfn 28705  df-lnfn 28707
This theorem is referenced by:  nlelchi  28920
  Copyright terms: Public domain W3C validator