Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elorrvc Structured version   Visualization version   Unicode version

Theorem elorrvc 30525
Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orrvccel.1  |-  ( ph  ->  P  e. Prob )
orrvccel.2  |-  ( ph  ->  X  e.  (rRndVar `  P
) )
orrvccel.4  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
elorrvc  |-  ( (
ph  /\  z  e.  U.
dom  P )  -> 
( z  e.  ( XRV/𝑐 R A )  <->  ( X `  z ) R A ) )
Distinct variable groups:    z, A    z, R    z, X
Allowed substitution hints:    ph( z)    P( z)    V( z)

Proof of Theorem elorrvc
StepHypRef Expression
1 orrvccel.1 . . . . . 6  |-  ( ph  ->  P  e. Prob )
2 orrvccel.2 . . . . . 6  |-  ( ph  ->  X  e.  (rRndVar `  P
) )
31, 2rrvdm 30508 . . . . 5  |-  ( ph  ->  dom  X  =  U. dom  P )
43eleq2d 2687 . . . 4  |-  ( ph  ->  ( z  e.  dom  X  <-> 
z  e.  U. dom  P ) )
54biimprd 238 . . 3  |-  ( ph  ->  ( z  e.  U. dom  P  ->  z  e.  dom  X ) )
65imdistani 726 . 2  |-  ( (
ph  /\  z  e.  U.
dom  P )  -> 
( ph  /\  z  e.  dom  X ) )
71, 2rrvfn 30507 . . . 4  |-  ( ph  ->  X  Fn  U. dom  P )
8 fnfun 5988 . . . 4  |-  ( X  Fn  U. dom  P  ->  Fun  X )
97, 8syl 17 . . 3  |-  ( ph  ->  Fun  X )
10 orrvccel.4 . . 3  |-  ( ph  ->  A  e.  V )
119, 2, 10elorvc 30521 . 2  |-  ( (
ph  /\  z  e.  dom  X )  ->  (
z  e.  ( XRV/𝑐 R A )  <->  ( X `  z ) R A ) )
126, 11syl 17 1  |-  ( (
ph  /\  z  e.  U.
dom  P )  -> 
( z  e.  ( XRV/𝑐 R A )  <->  ( X `  z ) R A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   U.cuni 4436   class class class wbr 4653   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650  Probcprb 30469  rRndVarcrrv 30502  ∘RV/𝑐corvc 30517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-topgen 16104  df-top 20699  df-bases 20750  df-esum 30090  df-siga 30171  df-sigagen 30202  df-brsiga 30245  df-meas 30259  df-mbfm 30313  df-prob 30470  df-rrv 30503  df-orvc 30518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator