MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlfcl Structured version   Visualization version   Unicode version

Theorem evlfcl 16862
Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors  C --> D, and the second parameter in  D. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfcl.e  |-  E  =  ( C evalF  D )
evlfcl.q  |-  Q  =  ( C FuncCat  D )
evlfcl.c  |-  ( ph  ->  C  e.  Cat )
evlfcl.d  |-  ( ph  ->  D  e.  Cat )
Assertion
Ref Expression
evlfcl  |-  ( ph  ->  E  e.  ( ( Q  X.c  C )  Func  D
) )

Proof of Theorem evlfcl
Dummy variables  f 
a  g  h  m  n  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlfcl.e . . . . 5  |-  E  =  ( C evalF  D )
2 evlfcl.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
3 evlfcl.d . . . . 5  |-  ( ph  ->  D  e.  Cat )
4 eqid 2622 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
5 eqid 2622 . . . . 5  |-  ( Hom  `  C )  =  ( Hom  `  C )
6 eqid 2622 . . . . 5  |-  (comp `  D )  =  (comp `  D )
7 eqid 2622 . . . . 5  |-  ( C Nat 
D )  =  ( C Nat  D )
81, 2, 3, 4, 5, 6, 7evlfval 16857 . . . 4  |-  ( ph  ->  E  =  <. (
f  e.  ( C 
Func  D ) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) ) ,  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) ,  y  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >. )
9 ovex 6678 . . . . . 6  |-  ( C 
Func  D )  e.  _V
10 fvex 6201 . . . . . 6  |-  ( Base `  C )  e.  _V
119, 10mpt2ex 7247 . . . . 5  |-  ( f  e.  ( C  Func  D ) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) )  e.  _V
129, 10xpex 6962 . . . . . 6  |-  ( ( C  Func  D )  X.  ( Base `  C
) )  e.  _V
1312, 12mpt2ex 7247 . . . . 5  |-  ( x  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) ,  y  e.  ( ( C  Func  D
)  X.  ( Base `  C ) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( C Nat 
D ) n ) ,  g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) )  e.  _V
1411, 13opelvv 5166 . . . 4  |-  <. (
f  e.  ( C 
Func  D ) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) ) ,  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) ,  y  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >.  e.  ( _V  X.  _V )
158, 14syl6eqel 2709 . . 3  |-  ( ph  ->  E  e.  ( _V 
X.  _V ) )
16 1st2nd2 7205 . . 3  |-  ( E  e.  ( _V  X.  _V )  ->  E  = 
<. ( 1st `  E
) ,  ( 2nd `  E ) >. )
1715, 16syl 17 . 2  |-  ( ph  ->  E  =  <. ( 1st `  E ) ,  ( 2nd `  E
) >. )
18 eqid 2622 . . . . 5  |-  ( Q  X.c  C )  =  ( Q  X.c  C )
19 evlfcl.q . . . . . 6  |-  Q  =  ( C FuncCat  D )
2019fucbas 16620 . . . . 5  |-  ( C 
Func  D )  =  (
Base `  Q )
2118, 20, 4xpcbas 16818 . . . 4  |-  ( ( C  Func  D )  X.  ( Base `  C
) )  =  (
Base `  ( Q  X.c  C ) )
22 eqid 2622 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
23 eqid 2622 . . . 4  |-  ( Hom  `  ( Q  X.c  C ) )  =  ( Hom  `  ( Q  X.c  C ) )
24 eqid 2622 . . . 4  |-  ( Hom  `  D )  =  ( Hom  `  D )
25 eqid 2622 . . . 4  |-  ( Id
`  ( Q  X.c  C
) )  =  ( Id `  ( Q  X.c  C ) )
26 eqid 2622 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
27 eqid 2622 . . . 4  |-  (comp `  ( Q  X.c  C )
)  =  (comp `  ( Q  X.c  C )
)
2819, 2, 3fuccat 16630 . . . . 5  |-  ( ph  ->  Q  e.  Cat )
2918, 28, 2xpccat 16830 . . . 4  |-  ( ph  ->  ( Q  X.c  C )  e.  Cat )
30 relfunc 16522 . . . . . . . . . . 11  |-  Rel  ( C  Func  D )
31 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  ( C  Func  D ) )  ->  f  e.  ( C  Func  D ) )
32 1st2ndbr 7217 . . . . . . . . . . 11  |-  ( ( Rel  ( C  Func  D )  /\  f  e.  ( C  Func  D
) )  ->  ( 1st `  f ) ( C  Func  D )
( 2nd `  f
) )
3330, 31, 32sylancr 695 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  ( C  Func  D ) )  ->  ( 1st `  f ) ( C 
Func  D ) ( 2nd `  f ) )
344, 22, 33funcf1 16526 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( C  Func  D ) )  ->  ( 1st `  f ) : (
Base `  C ) --> ( Base `  D )
)
3534ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  ( C  Func  D
) )  /\  x  e.  ( Base `  C
) )  ->  (
( 1st `  f
) `  x )  e.  ( Base `  D
) )
3635ralrimiva 2966 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( C  Func  D ) )  ->  A. x  e.  ( Base `  C
) ( ( 1st `  f ) `  x
)  e.  ( Base `  D ) )
3736ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. f  e.  ( C  Func  D ) A. x  e.  ( Base `  C ) ( ( 1st `  f
) `  x )  e.  ( Base `  D
) )
38 eqid 2622 . . . . . . 7  |-  ( f  e.  ( C  Func  D ) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) )  =  ( f  e.  ( C 
Func  D ) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) )
3938fmpt2 7237 . . . . . 6  |-  ( A. f  e.  ( C  Func  D ) A. x  e.  ( Base `  C
) ( ( 1st `  f ) `  x
)  e.  ( Base `  D )  <->  ( f  e.  ( C  Func  D
) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) ) : ( ( C  Func  D
)  X.  ( Base `  C ) ) --> (
Base `  D )
)
4037, 39sylib 208 . . . . 5  |-  ( ph  ->  ( f  e.  ( C  Func  D ) ,  x  e.  ( Base `  C )  |->  ( ( 1st `  f
) `  x )
) : ( ( C  Func  D )  X.  ( Base `  C
) ) --> ( Base `  D ) )
4111, 13op1std 7178 . . . . . . 7  |-  ( E  =  <. ( f  e.  ( C  Func  D
) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) ) ,  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) ,  y  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >.  ->  ( 1st `  E )  =  ( f  e.  ( C 
Func  D ) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) ) )
428, 41syl 17 . . . . . 6  |-  ( ph  ->  ( 1st `  E
)  =  ( f  e.  ( C  Func  D ) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) ) )
4342feq1d 6030 . . . . 5  |-  ( ph  ->  ( ( 1st `  E
) : ( ( C  Func  D )  X.  ( Base `  C
) ) --> ( Base `  D )  <->  ( f  e.  ( C  Func  D
) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) ) : ( ( C  Func  D
)  X.  ( Base `  C ) ) --> (
Base `  D )
) )
4440, 43mpbird 247 . . . 4  |-  ( ph  ->  ( 1st `  E
) : ( ( C  Func  D )  X.  ( Base `  C
) ) --> ( Base `  D ) )
45 eqid 2622 . . . . . 6  |-  ( x  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) ,  y  e.  ( ( C  Func  D
)  X.  ( Base `  C ) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( C Nat 
D ) n ) ,  g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) )  =  ( x  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) ,  y  e.  ( ( C  Func  D
)  X.  ( Base `  C ) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( C Nat 
D ) n ) ,  g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) )
46 ovex 6678 . . . . . . . . 9  |-  ( m ( C Nat  D ) n )  e.  _V
47 ovex 6678 . . . . . . . . 9  |-  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  e.  _V
4846, 47mpt2ex 7247 . . . . . . . 8  |-  ( a  e.  ( m ( C Nat  D ) n ) ,  g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) )  e.  _V
4948csbex 4793 . . . . . . 7  |-  [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( C Nat 
D ) n ) ,  g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) )  e.  _V
5049csbex 4793 . . . . . 6  |-  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) )  e.  _V
5145, 50fnmpt2i 7239 . . . . 5  |-  ( x  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) ,  y  e.  ( ( C  Func  D
)  X.  ( Base `  C ) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( C Nat 
D ) n ) ,  g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) )  Fn  ( ( ( C  Func  D
)  X.  ( Base `  C ) )  X.  ( ( C  Func  D )  X.  ( Base `  C ) ) )
5211, 13op2ndd 7179 . . . . . . 7  |-  ( E  =  <. ( f  e.  ( C  Func  D
) ,  x  e.  ( Base `  C
)  |->  ( ( 1st `  f ) `  x
) ) ,  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) ,  y  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >.  ->  ( 2nd `  E )  =  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) ,  y  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) )
538, 52syl 17 . . . . . 6  |-  ( ph  ->  ( 2nd `  E
)  =  ( x  e.  ( ( C 
Func  D )  X.  ( Base `  C ) ) ,  y  e.  ( ( C  Func  D
)  X.  ( Base `  C ) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( C Nat 
D ) n ) ,  g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) )
5453fneq1d 5981 . . . . 5  |-  ( ph  ->  ( ( 2nd `  E
)  Fn  ( ( ( C  Func  D
)  X.  ( Base `  C ) )  X.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  <-> 
( x  e.  ( ( C  Func  D
)  X.  ( Base `  C ) ) ,  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) )  Fn  ( ( ( C  Func  D
)  X.  ( Base `  C ) )  X.  ( ( C  Func  D )  X.  ( Base `  C ) ) ) ) )
5551, 54mpbiri 248 . . . 4  |-  ( ph  ->  ( 2nd `  E
)  Fn  ( ( ( C  Func  D
)  X.  ( Base `  C ) )  X.  ( ( C  Func  D )  X.  ( Base `  C ) ) ) )
563ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  D  e.  Cat )
5756adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  D  e.  Cat )
58 simplrl 800 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  f  e.  ( C  Func  D ) )
5930, 58, 32sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( 1st `  f ) ( C 
Func  D ) ( 2nd `  f ) )
604, 22, 59funcf1 16526 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( 1st `  f ) : (
Base `  C ) --> ( Base `  D )
)
6160adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  ( 1st `  f
) : ( Base `  C ) --> ( Base `  D ) )
62 simplrr 801 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  u  e.  ( Base `  C )
)
6362adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  u  e.  (
Base `  C )
)
6461, 63ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  ( ( 1st `  f ) `  u
)  e.  ( Base `  D ) )
65 simplrr 801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  v  e.  (
Base `  C )
)
6661, 65ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  ( ( 1st `  f ) `  v
)  e.  ( Base `  D ) )
67 simprl 794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  g  e.  ( C  Func  D ) )
68 1st2ndbr 7217 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Rel  ( C  Func  D )  /\  g  e.  ( C  Func  D
) )  ->  ( 1st `  g ) ( C  Func  D )
( 2nd `  g
) )
6930, 67, 68sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( 1st `  g ) ( C 
Func  D ) ( 2nd `  g ) )
704, 22, 69funcf1 16526 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( 1st `  g ) : (
Base `  C ) --> ( Base `  D )
)
7170adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  ( 1st `  g
) : ( Base `  C ) --> ( Base `  D ) )
7271, 65ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  ( ( 1st `  g ) `  v
)  e.  ( Base `  D ) )
73 simprr 796 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  v  e.  ( Base `  C )
)
744, 5, 24, 59, 62, 73funcf2 16528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( u
( 2nd `  f
) v ) : ( u ( Hom  `  C ) v ) --> ( ( ( 1st `  f ) `  u
) ( Hom  `  D
) ( ( 1st `  f ) `  v
) ) )
7574adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  ( u ( 2nd `  f ) v ) : ( u ( Hom  `  C
) v ) --> ( ( ( 1st `  f
) `  u )
( Hom  `  D ) ( ( 1st `  f
) `  v )
) )
76 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  h  e.  ( u ( Hom  `  C
) v ) )
7775, 76ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  ( ( u ( 2nd `  f
) v ) `  h )  e.  ( ( ( 1st `  f
) `  u )
( Hom  `  D ) ( ( 1st `  f
) `  v )
) )
78 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  a  e.  ( f ( C Nat  D
) g ) )
797, 78nat1st2nd 16611 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  a  e.  (
<. ( 1st `  f
) ,  ( 2nd `  f ) >. ( C Nat  D ) <. ( 1st `  g ) ,  ( 2nd `  g
) >. ) )
807, 79, 4, 24, 65natcl 16613 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  ( a `  v )  e.  ( ( ( 1st `  f
) `  v )
( Hom  `  D ) ( ( 1st `  g
) `  v )
) )
8122, 24, 6, 57, 64, 66, 72, 77, 80catcocl 16346 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  ( C  Func  D )  /\  u  e.  ( Base `  C ) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C
) ) )  /\  ( a  e.  ( f ( C Nat  D
) g )  /\  h  e.  ( u
( Hom  `  C ) v ) ) )  ->  ( ( a `
 v ) (
<. ( ( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  v
) >. (comp `  D
) ( ( 1st `  g ) `  v
) ) ( ( u ( 2nd `  f
) v ) `  h ) )  e.  ( ( ( 1st `  f ) `  u
) ( Hom  `  D
) ( ( 1st `  g ) `  v
) ) )
8281ralrimivva 2971 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  A. a  e.  ( f ( C Nat 
D ) g ) A. h  e.  ( u ( Hom  `  C
) v ) ( ( a `  v
) ( <. (
( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  v
) >. (comp `  D
) ( ( 1st `  g ) `  v
) ) ( ( u ( 2nd `  f
) v ) `  h ) )  e.  ( ( ( 1st `  f ) `  u
) ( Hom  `  D
) ( ( 1st `  g ) `  v
) ) )
83 eqid 2622 . . . . . . . . . . . . . 14  |-  ( a  e.  ( f ( C Nat  D ) g ) ,  h  e.  ( u ( Hom  `  C ) v ) 
|->  ( ( a `  v ) ( <.
( ( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  v
) >. (comp `  D
) ( ( 1st `  g ) `  v
) ) ( ( u ( 2nd `  f
) v ) `  h ) ) )  =  ( a  e.  ( f ( C Nat 
D ) g ) ,  h  e.  ( u ( Hom  `  C
) v )  |->  ( ( a `  v
) ( <. (
( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  v
) >. (comp `  D
) ( ( 1st `  g ) `  v
) ) ( ( u ( 2nd `  f
) v ) `  h ) ) )
8483fmpt2 7237 . . . . . . . . . . . . 13  |-  ( A. a  e.  ( f
( C Nat  D ) g ) A. h  e.  ( u ( Hom  `  C ) v ) ( ( a `  v ) ( <.
( ( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  v
) >. (comp `  D
) ( ( 1st `  g ) `  v
) ) ( ( u ( 2nd `  f
) v ) `  h ) )  e.  ( ( ( 1st `  f ) `  u
) ( Hom  `  D
) ( ( 1st `  g ) `  v
) )  <->  ( a  e.  ( f ( C Nat 
D ) g ) ,  h  e.  ( u ( Hom  `  C
) v )  |->  ( ( a `  v
) ( <. (
( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  v
) >. (comp `  D
) ( ( 1st `  g ) `  v
) ) ( ( u ( 2nd `  f
) v ) `  h ) ) ) : ( ( f ( C Nat  D ) g )  X.  (
u ( Hom  `  C
) v ) ) --> ( ( ( 1st `  f ) `  u
) ( Hom  `  D
) ( ( 1st `  g ) `  v
) ) )
8582, 84sylib 208 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( a  e.  ( f ( C Nat 
D ) g ) ,  h  e.  ( u ( Hom  `  C
) v )  |->  ( ( a `  v
) ( <. (
( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  v
) >. (comp `  D
) ( ( 1st `  g ) `  v
) ) ( ( u ( 2nd `  f
) v ) `  h ) ) ) : ( ( f ( C Nat  D ) g )  X.  (
u ( Hom  `  C
) v ) ) --> ( ( ( 1st `  f ) `  u
) ( Hom  `  D
) ( ( 1st `  g ) `  v
) ) )
862ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  C  e.  Cat )
87 eqid 2622 . . . . . . . . . . . . . 14  |-  ( <.
f ,  u >. ( 2nd `  E )
<. g ,  v >.
)  =  ( <.
f ,  u >. ( 2nd `  E )
<. g ,  v >.
)
881, 86, 56, 4, 5, 6, 7, 58, 67, 62, 73, 87evlf2 16858 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( <. f ,  u >. ( 2nd `  E ) <.
g ,  v >.
)  =  ( a  e.  ( f ( C Nat  D ) g ) ,  h  e.  ( u ( Hom  `  C ) v ) 
|->  ( ( a `  v ) ( <.
( ( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  v
) >. (comp `  D
) ( ( 1st `  g ) `  v
) ) ( ( u ( 2nd `  f
) v ) `  h ) ) ) )
8988feq1d 6030 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( ( <. f ,  u >. ( 2nd `  E )
<. g ,  v >.
) : ( ( f ( C Nat  D
) g )  X.  ( u ( Hom  `  C ) v ) ) --> ( ( ( 1st `  f ) `
 u ) ( Hom  `  D )
( ( 1st `  g
) `  v )
)  <->  ( a  e.  ( f ( C Nat 
D ) g ) ,  h  e.  ( u ( Hom  `  C
) v )  |->  ( ( a `  v
) ( <. (
( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  v
) >. (comp `  D
) ( ( 1st `  g ) `  v
) ) ( ( u ( 2nd `  f
) v ) `  h ) ) ) : ( ( f ( C Nat  D ) g )  X.  (
u ( Hom  `  C
) v ) ) --> ( ( ( 1st `  f ) `  u
) ( Hom  `  D
) ( ( 1st `  g ) `  v
) ) ) )
9085, 89mpbird 247 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( <. f ,  u >. ( 2nd `  E ) <.
g ,  v >.
) : ( ( f ( C Nat  D
) g )  X.  ( u ( Hom  `  C ) v ) ) --> ( ( ( 1st `  f ) `
 u ) ( Hom  `  D )
( ( 1st `  g
) `  v )
) )
9119, 7fuchom 16621 . . . . . . . . . . . . 13  |-  ( C Nat 
D )  =  ( Hom  `  Q )
9218, 20, 4, 91, 5, 58, 62, 67, 73, 23xpchom2 16826 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( <. f ,  u >. ( Hom  `  ( Q  X.c  C
) ) <. g ,  v >. )  =  ( ( f ( C Nat  D ) g )  X.  (
u ( Hom  `  C
) v ) ) )
931, 86, 56, 4, 58, 62evlf1 16860 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( f
( 1st `  E
) u )  =  ( ( 1st `  f
) `  u )
)
941, 86, 56, 4, 67, 73evlf1 16860 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( g
( 1st `  E
) v )  =  ( ( 1st `  g
) `  v )
)
9593, 94oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( (
f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) )  =  ( ( ( 1st `  f
) `  u )
( Hom  `  D ) ( ( 1st `  g
) `  v )
) )
9692, 95feq23d 6040 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( ( <. f ,  u >. ( 2nd `  E )
<. g ,  v >.
) : ( <.
f ,  u >. ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) )  <->  ( <. f ,  u >. ( 2nd `  E
) <. g ,  v
>. ) : ( ( f ( C Nat  D
) g )  X.  ( u ( Hom  `  C ) v ) ) --> ( ( ( 1st `  f ) `
 u ) ( Hom  `  D )
( ( 1st `  g
) `  v )
) ) )
9790, 96mpbird 247 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( C 
Func  D )  /\  u  e.  ( Base `  C
) ) )  /\  ( g  e.  ( C  Func  D )  /\  v  e.  ( Base `  C ) ) )  ->  ( <. f ,  u >. ( 2nd `  E ) <.
g ,  v >.
) : ( <.
f ,  u >. ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) )
9897ralrimivva 2971 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  A. g  e.  ( C  Func  D
) A. v  e.  ( Base `  C
) ( <. f ,  u >. ( 2nd `  E
) <. g ,  v
>. ) : ( <.
f ,  u >. ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) )
9998ralrimivva 2971 . . . . . . . 8  |-  ( ph  ->  A. f  e.  ( C  Func  D ) A. u  e.  ( Base `  C ) A. g  e.  ( C  Func  D ) A. v  e.  ( Base `  C
) ( <. f ,  u >. ( 2nd `  E
) <. g ,  v
>. ) : ( <.
f ,  u >. ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) )
100 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  <. g ,  v
>.  ->  ( x ( 2nd `  E ) y )  =  ( x ( 2nd `  E
) <. g ,  v
>. ) )
101 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  <. g ,  v
>.  ->  ( x ( Hom  `  ( Q  X.c  C ) ) y )  =  ( x ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) )
102 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( y  =  <. g ,  v
>.  ->  ( ( 1st `  E ) `  y
)  =  ( ( 1st `  E ) `
 <. g ,  v
>. ) )
103 df-ov 6653 . . . . . . . . . . . . . 14  |-  ( g ( 1st `  E
) v )  =  ( ( 1st `  E
) `  <. g ,  v >. )
104102, 103syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( y  =  <. g ,  v
>.  ->  ( ( 1st `  E ) `  y
)  =  ( g ( 1st `  E
) v ) )
105104oveq2d 6666 . . . . . . . . . . . 12  |-  ( y  =  <. g ,  v
>.  ->  ( ( ( 1st `  E ) `
 x ) ( Hom  `  D )
( ( 1st `  E
) `  y )
)  =  ( ( ( 1st `  E
) `  x )
( Hom  `  D ) ( g ( 1st `  E ) v ) ) )
106100, 101, 105feq123d 6034 . . . . . . . . . . 11  |-  ( y  =  <. g ,  v
>.  ->  ( ( x ( 2nd `  E
) y ) : ( x ( Hom  `  ( Q  X.c  C ) ) y ) --> ( ( ( 1st `  E
) `  x )
( Hom  `  D ) ( ( 1st `  E
) `  y )
)  <->  ( x ( 2nd `  E )
<. g ,  v >.
) : ( x ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( ( 1st `  E ) `
 x ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) ) )
107106ralxp 5263 . . . . . . . . . 10  |-  ( A. y  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) ( x ( 2nd `  E
) y ) : ( x ( Hom  `  ( Q  X.c  C ) ) y ) --> ( ( ( 1st `  E
) `  x )
( Hom  `  D ) ( ( 1st `  E
) `  y )
)  <->  A. g  e.  ( C  Func  D ) A. v  e.  ( Base `  C ) ( x ( 2nd `  E
) <. g ,  v
>. ) : ( x ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( ( 1st `  E ) `
 x ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) )
108 oveq1 6657 . . . . . . . . . . . 12  |-  ( x  =  <. f ,  u >.  ->  ( x ( 2nd `  E )
<. g ,  v >.
)  =  ( <.
f ,  u >. ( 2nd `  E )
<. g ,  v >.
) )
109 oveq1 6657 . . . . . . . . . . . 12  |-  ( x  =  <. f ,  u >.  ->  ( x ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
)  =  ( <.
f ,  u >. ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) )
110 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  <. f ,  u >.  ->  ( ( 1st `  E ) `  x
)  =  ( ( 1st `  E ) `
 <. f ,  u >. ) )
111 df-ov 6653 . . . . . . . . . . . . . 14  |-  ( f ( 1st `  E
) u )  =  ( ( 1st `  E
) `  <. f ,  u >. )
112110, 111syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( x  =  <. f ,  u >.  ->  ( ( 1st `  E ) `  x
)  =  ( f ( 1st `  E
) u ) )
113112oveq1d 6665 . . . . . . . . . . . 12  |-  ( x  =  <. f ,  u >.  ->  ( ( ( 1st `  E ) `
 x ) ( Hom  `  D )
( g ( 1st `  E ) v ) )  =  ( ( f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) )
114108, 109, 113feq123d 6034 . . . . . . . . . . 11  |-  ( x  =  <. f ,  u >.  ->  ( ( x ( 2nd `  E
) <. g ,  v
>. ) : ( x ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( ( 1st `  E ) `
 x ) ( Hom  `  D )
( g ( 1st `  E ) v ) )  <->  ( <. f ,  u >. ( 2nd `  E
) <. g ,  v
>. ) : ( <.
f ,  u >. ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) ) )
1151142ralbidv 2989 . . . . . . . . . 10  |-  ( x  =  <. f ,  u >.  ->  ( A. g  e.  ( C  Func  D
) A. v  e.  ( Base `  C
) ( x ( 2nd `  E )
<. g ,  v >.
) : ( x ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( ( 1st `  E ) `
 x ) ( Hom  `  D )
( g ( 1st `  E ) v ) )  <->  A. g  e.  ( C  Func  D ) A. v  e.  ( Base `  C ) (
<. f ,  u >. ( 2nd `  E )
<. g ,  v >.
) : ( <.
f ,  u >. ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) ) )
116107, 115syl5bb 272 . . . . . . . . 9  |-  ( x  =  <. f ,  u >.  ->  ( A. y  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) ( x ( 2nd `  E
) y ) : ( x ( Hom  `  ( Q  X.c  C ) ) y ) --> ( ( ( 1st `  E
) `  x )
( Hom  `  D ) ( ( 1st `  E
) `  y )
)  <->  A. g  e.  ( C  Func  D ) A. v  e.  ( Base `  C ) (
<. f ,  u >. ( 2nd `  E )
<. g ,  v >.
) : ( <.
f ,  u >. ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) ) )
117116ralxp 5263 . . . . . . . 8  |-  ( A. x  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) A. y  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) ( x ( 2nd `  E
) y ) : ( x ( Hom  `  ( Q  X.c  C ) ) y ) --> ( ( ( 1st `  E
) `  x )
( Hom  `  D ) ( ( 1st `  E
) `  y )
)  <->  A. f  e.  ( C  Func  D ) A. u  e.  ( Base `  C ) A. g  e.  ( C  Func  D ) A. v  e.  ( Base `  C
) ( <. f ,  u >. ( 2nd `  E
) <. g ,  v
>. ) : ( <.
f ,  u >. ( Hom  `  ( Q  X.c  C ) ) <.
g ,  v >.
) --> ( ( f ( 1st `  E
) u ) ( Hom  `  D )
( g ( 1st `  E ) v ) ) )
11899, 117sylibr 224 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( ( C  Func  D
)  X.  ( Base `  C ) ) A. y  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) ( x ( 2nd `  E
) y ) : ( x ( Hom  `  ( Q  X.c  C ) ) y ) --> ( ( ( 1st `  E
) `  x )
( Hom  `  D ) ( ( 1st `  E
) `  y )
) )
119118r19.21bi 2932 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  ->  A. y  e.  ( ( C  Func  D
)  X.  ( Base `  C ) ) ( x ( 2nd `  E
) y ) : ( x ( Hom  `  ( Q  X.c  C ) ) y ) --> ( ( ( 1st `  E
) `  x )
( Hom  `  D ) ( ( 1st `  E
) `  y )
) )
120119r19.21bi 2932 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  y  e.  ( ( C  Func  D
)  X.  ( Base `  C ) ) )  ->  ( x ( 2nd `  E ) y ) : ( x ( Hom  `  ( Q  X.c  C ) ) y ) --> ( ( ( 1st `  E ) `
 x ) ( Hom  `  D )
( ( 1st `  E
) `  y )
) )
121120anasss 679 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) ) )  ->  ( x ( 2nd `  E ) y ) : ( x ( Hom  `  ( Q  X.c  C ) ) y ) --> ( ( ( 1st `  E ) `
 x ) ( Hom  `  D )
( ( 1st `  E
) `  y )
) )
12228adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  Q  e.  Cat )
1232adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  C  e.  Cat )
124 eqid 2622 . . . . . . . . . . 11  |-  ( Id
`  Q )  =  ( Id `  Q
)
125 eqid 2622 . . . . . . . . . . 11  |-  ( Id
`  C )  =  ( Id `  C
)
126 simprl 794 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  f  e.  ( C  Func  D
) )
127 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  u  e.  ( Base `  C
) )
12818, 122, 123, 20, 4, 124, 125, 25, 126, 127xpcid 16829 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( Id `  ( Q  X.c  C ) ) `  <. f ,  u >. )  =  <. ( ( Id
`  Q ) `  f ) ,  ( ( Id `  C
) `  u ) >. )
129128fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( <. f ,  u >. ( 2nd `  E
) <. f ,  u >. ) `  ( ( Id `  ( Q  X.c  C ) ) `  <. f ,  u >. ) )  =  ( (
<. f ,  u >. ( 2nd `  E )
<. f ,  u >. ) `
 <. ( ( Id
`  Q ) `  f ) ,  ( ( Id `  C
) `  u ) >. ) )
130 df-ov 6653 . . . . . . . . 9  |-  ( ( ( Id `  Q
) `  f )
( <. f ,  u >. ( 2nd `  E
) <. f ,  u >. ) ( ( Id
`  C ) `  u ) )  =  ( ( <. f ,  u >. ( 2nd `  E
) <. f ,  u >. ) `  <. (
( Id `  Q
) `  f ) ,  ( ( Id
`  C ) `  u ) >. )
131129, 130syl6eqr 2674 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( <. f ,  u >. ( 2nd `  E
) <. f ,  u >. ) `  ( ( Id `  ( Q  X.c  C ) ) `  <. f ,  u >. ) )  =  ( ( ( Id `  Q
) `  f )
( <. f ,  u >. ( 2nd `  E
) <. f ,  u >. ) ( ( Id
`  C ) `  u ) ) )
1323adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  D  e.  Cat )
133 eqid 2622 . . . . . . . . 9  |-  ( <.
f ,  u >. ( 2nd `  E )
<. f ,  u >. )  =  ( <. f ,  u >. ( 2nd `  E
) <. f ,  u >. )
13420, 91, 124, 122, 126catidcl 16343 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( Id `  Q
) `  f )  e.  ( f ( C Nat 
D ) f ) )
1354, 5, 125, 123, 127catidcl 16343 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( Id `  C
) `  u )  e.  ( u ( Hom  `  C ) u ) )
1361, 123, 132, 4, 5, 6, 7, 126, 126, 127, 127, 133, 134, 135evlf2val 16859 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( ( Id `  Q ) `  f
) ( <. f ,  u >. ( 2nd `  E
) <. f ,  u >. ) ( ( Id
`  C ) `  u ) )  =  ( ( ( ( Id `  Q ) `
 f ) `  u ) ( <.
( ( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  u
) >. (comp `  D
) ( ( 1st `  f ) `  u
) ) ( ( u ( 2nd `  f
) u ) `  ( ( Id `  C ) `  u
) ) ) )
13730, 126, 32sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  ( 1st `  f ) ( C  Func  D )
( 2nd `  f
) )
1384, 22, 137funcf1 16526 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  ( 1st `  f ) : ( Base `  C
) --> ( Base `  D
) )
139138, 127ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( 1st `  f
) `  u )  e.  ( Base `  D
) )
14022, 24, 26, 132, 139catidcl 16343 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( Id `  D
) `  ( ( 1st `  f ) `  u ) )  e.  ( ( ( 1st `  f ) `  u
) ( Hom  `  D
) ( ( 1st `  f ) `  u
) ) )
14122, 24, 26, 132, 139, 6, 139, 140catlid 16344 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( ( Id `  D ) `  (
( 1st `  f
) `  u )
) ( <. (
( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  u
) >. (comp `  D
) ( ( 1st `  f ) `  u
) ) ( ( Id `  D ) `
 ( ( 1st `  f ) `  u
) ) )  =  ( ( Id `  D ) `  (
( 1st `  f
) `  u )
) )
14219, 124, 26, 126fucid 16631 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( Id `  Q
) `  f )  =  ( ( Id
`  D )  o.  ( 1st `  f
) ) )
143142fveq1d 6193 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( ( Id `  Q ) `  f
) `  u )  =  ( ( ( Id `  D )  o.  ( 1st `  f
) ) `  u
) )
144 fvco3 6275 . . . . . . . . . . . 12  |-  ( ( ( 1st `  f
) : ( Base `  C ) --> ( Base `  D )  /\  u  e.  ( Base `  C
) )  ->  (
( ( Id `  D )  o.  ( 1st `  f ) ) `
 u )  =  ( ( Id `  D ) `  (
( 1st `  f
) `  u )
) )
145138, 127, 144syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( ( Id `  D )  o.  ( 1st `  f ) ) `
 u )  =  ( ( Id `  D ) `  (
( 1st `  f
) `  u )
) )
146143, 145eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( ( Id `  Q ) `  f
) `  u )  =  ( ( Id
`  D ) `  ( ( 1st `  f
) `  u )
) )
1474, 125, 26, 137, 127funcid 16530 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( u ( 2nd `  f ) u ) `
 ( ( Id
`  C ) `  u ) )  =  ( ( Id `  D ) `  (
( 1st `  f
) `  u )
) )
148146, 147oveq12d 6668 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( ( ( Id
`  Q ) `  f ) `  u
) ( <. (
( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  u
) >. (comp `  D
) ( ( 1st `  f ) `  u
) ) ( ( u ( 2nd `  f
) u ) `  ( ( Id `  C ) `  u
) ) )  =  ( ( ( Id
`  D ) `  ( ( 1st `  f
) `  u )
) ( <. (
( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  u
) >. (comp `  D
) ( ( 1st `  f ) `  u
) ) ( ( Id `  D ) `
 ( ( 1st `  f ) `  u
) ) ) )
1491, 123, 132, 4, 126, 127evlf1 16860 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
f ( 1st `  E
) u )  =  ( ( 1st `  f
) `  u )
)
150149fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( Id `  D
) `  ( f
( 1st `  E
) u ) )  =  ( ( Id
`  D ) `  ( ( 1st `  f
) `  u )
) )
151141, 148, 1503eqtr4d 2666 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( ( ( Id
`  Q ) `  f ) `  u
) ( <. (
( 1st `  f
) `  u ) ,  ( ( 1st `  f ) `  u
) >. (comp `  D
) ( ( 1st `  f ) `  u
) ) ( ( u ( 2nd `  f
) u ) `  ( ( Id `  C ) `  u
) ) )  =  ( ( Id `  D ) `  (
f ( 1st `  E
) u ) ) )
152131, 136, 1513eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  ( C  Func  D
)  /\  u  e.  ( Base `  C )
) )  ->  (
( <. f ,  u >. ( 2nd `  E
) <. f ,  u >. ) `  ( ( Id `  ( Q  X.c  C ) ) `  <. f ,  u >. ) )  =  ( ( Id `  D ) `
 ( f ( 1st `  E ) u ) ) )
153152ralrimivva 2971 . . . . . 6  |-  ( ph  ->  A. f  e.  ( C  Func  D ) A. u  e.  ( Base `  C ) ( ( <. f ,  u >. ( 2nd `  E
) <. f ,  u >. ) `  ( ( Id `  ( Q  X.c  C ) ) `  <. f ,  u >. ) )  =  ( ( Id `  D ) `
 ( f ( 1st `  E ) u ) ) )
154 id 22 . . . . . . . . . 10  |-  ( x  =  <. f ,  u >.  ->  x  =  <. f ,  u >. )
155154, 154oveq12d 6668 . . . . . . . . 9  |-  ( x  =  <. f ,  u >.  ->  ( x ( 2nd `  E ) x )  =  (
<. f ,  u >. ( 2nd `  E )
<. f ,  u >. ) )
156 fveq2 6191 . . . . . . . . 9  |-  ( x  =  <. f ,  u >.  ->  ( ( Id
`  ( Q  X.c  C
) ) `  x
)  =  ( ( Id `  ( Q  X.c  C ) ) `  <. f ,  u >. ) )
157155, 156fveq12d 6197 . . . . . . . 8  |-  ( x  =  <. f ,  u >.  ->  ( ( x ( 2nd `  E
) x ) `  ( ( Id `  ( Q  X.c  C )
) `  x )
)  =  ( (
<. f ,  u >. ( 2nd `  E )
<. f ,  u >. ) `
 ( ( Id
`  ( Q  X.c  C
) ) `  <. f ,  u >. )
) )
158112fveq2d 6195 . . . . . . . 8  |-  ( x  =  <. f ,  u >.  ->  ( ( Id
`  D ) `  ( ( 1st `  E
) `  x )
)  =  ( ( Id `  D ) `
 ( f ( 1st `  E ) u ) ) )
159157, 158eqeq12d 2637 . . . . . . 7  |-  ( x  =  <. f ,  u >.  ->  ( ( ( x ( 2nd `  E
) x ) `  ( ( Id `  ( Q  X.c  C )
) `  x )
)  =  ( ( Id `  D ) `
 ( ( 1st `  E ) `  x
) )  <->  ( ( <. f ,  u >. ( 2nd `  E )
<. f ,  u >. ) `
 ( ( Id
`  ( Q  X.c  C
) ) `  <. f ,  u >. )
)  =  ( ( Id `  D ) `
 ( f ( 1st `  E ) u ) ) ) )
160159ralxp 5263 . . . . . 6  |-  ( A. x  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) ( ( x ( 2nd `  E
) x ) `  ( ( Id `  ( Q  X.c  C )
) `  x )
)  =  ( ( Id `  D ) `
 ( ( 1st `  E ) `  x
) )  <->  A. f  e.  ( C  Func  D
) A. u  e.  ( Base `  C
) ( ( <.
f ,  u >. ( 2nd `  E )
<. f ,  u >. ) `
 ( ( Id
`  ( Q  X.c  C
) ) `  <. f ,  u >. )
)  =  ( ( Id `  D ) `
 ( f ( 1st `  E ) u ) ) )
161153, 160sylibr 224 . . . . 5  |-  ( ph  ->  A. x  e.  ( ( C  Func  D
)  X.  ( Base `  C ) ) ( ( x ( 2nd `  E ) x ) `
 ( ( Id
`  ( Q  X.c  C
) ) `  x
) )  =  ( ( Id `  D
) `  ( ( 1st `  E ) `  x ) ) )
162161r19.21bi 2932 . . . 4  |-  ( (
ph  /\  x  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  ->  ( ( x ( 2nd `  E
) x ) `  ( ( Id `  ( Q  X.c  C )
) `  x )
)  =  ( ( Id `  D ) `
 ( ( 1st `  E ) `  x
) ) )
16323ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  C  e.  Cat )
16433ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  D  e.  Cat )
165 simp21 1094 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  x  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) )
166 1st2nd2 7205 . . . . . . . . 9  |-  ( x  e.  ( ( C 
Func  D )  X.  ( Base `  C ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
167165, 166syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
168167, 165eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( ( C  Func  D
)  X.  ( Base `  C ) ) )
169 opelxp 5146 . . . . . . 7  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( ( C  Func  D
)  X.  ( Base `  C ) )  <->  ( ( 1st `  x )  e.  ( C  Func  D
)  /\  ( 2nd `  x )  e.  (
Base `  C )
) )
170168, 169sylib 208 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( 1st `  x
)  e.  ( C 
Func  D )  /\  ( 2nd `  x )  e.  ( Base `  C
) ) )
171 simp22 1095 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
y  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) )
172 1st2nd2 7205 . . . . . . . . 9  |-  ( y  e.  ( ( C 
Func  D )  X.  ( Base `  C ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
173171, 172syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
174173, 171eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  ( ( C  Func  D
)  X.  ( Base `  C ) ) )
175 opelxp 5146 . . . . . . 7  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  e.  ( ( C  Func  D
)  X.  ( Base `  C ) )  <->  ( ( 1st `  y )  e.  ( C  Func  D
)  /\  ( 2nd `  y )  e.  (
Base `  C )
) )
176174, 175sylib 208 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( 1st `  y
)  e.  ( C 
Func  D )  /\  ( 2nd `  y )  e.  ( Base `  C
) ) )
177 simp23 1096 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
z  e.  ( ( C  Func  D )  X.  ( Base `  C
) ) )
178 1st2nd2 7205 . . . . . . . . 9  |-  ( z  e.  ( ( C 
Func  D )  X.  ( Base `  C ) )  ->  z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
179177, 178syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
180179, 177eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  ( ( C  Func  D
)  X.  ( Base `  C ) ) )
181 opelxp 5146 . . . . . . 7  |-  ( <.
( 1st `  z
) ,  ( 2nd `  z ) >.  e.  ( ( C  Func  D
)  X.  ( Base `  C ) )  <->  ( ( 1st `  z )  e.  ( C  Func  D
)  /\  ( 2nd `  z )  e.  (
Base `  C )
) )
182180, 181sylib 208 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( 1st `  z
)  e.  ( C 
Func  D )  /\  ( 2nd `  z )  e.  ( Base `  C
) ) )
183 simp3l 1089 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y ) )
18418, 21, 91, 5, 23, 165, 171xpchom 16820 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( x ( Hom  `  ( Q  X.c  C ) ) y )  =  ( ( ( 1st `  x ) ( C Nat 
D ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) )
185183, 184eleqtrd 2703 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
f  e.  ( ( ( 1st `  x
) ( C Nat  D
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) )
186 1st2nd2 7205 . . . . . . . . 9  |-  ( f  e.  ( ( ( 1st `  x ) ( C Nat  D ) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) )  -> 
f  =  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )
187185, 186syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
f  =  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )
188187, 185eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  <. ( 1st `  f
) ,  ( 2nd `  f ) >.  e.  ( ( ( 1st `  x
) ( C Nat  D
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) )
189 opelxp 5146 . . . . . . 7  |-  ( <.
( 1st `  f
) ,  ( 2nd `  f ) >.  e.  ( ( ( 1st `  x
) ( C Nat  D
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) )  <->  ( ( 1st `  f )  e.  ( ( 1st `  x
) ( C Nat  D
) ( 1st `  y
) )  /\  ( 2nd `  f )  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) )
190188, 189sylib 208 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( 1st `  f
)  e.  ( ( 1st `  x ) ( C Nat  D ) ( 1st `  y
) )  /\  ( 2nd `  f )  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) )
191 simp3r 1090 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
g  e.  ( y ( Hom  `  ( Q  X.c  C ) ) z ) )
19218, 21, 91, 5, 23, 171, 177xpchom 16820 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( y ( Hom  `  ( Q  X.c  C ) ) z )  =  ( ( ( 1st `  y ) ( C Nat 
D ) ( 1st `  z ) )  X.  ( ( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
193191, 192eleqtrd 2703 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
g  e.  ( ( ( 1st `  y
) ( C Nat  D
) ( 1st `  z
) )  X.  (
( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
194 1st2nd2 7205 . . . . . . . . 9  |-  ( g  e.  ( ( ( 1st `  y ) ( C Nat  D ) ( 1st `  z
) )  X.  (
( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
195193, 194syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
196195, 193eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  <. ( 1st `  g
) ,  ( 2nd `  g ) >.  e.  ( ( ( 1st `  y
) ( C Nat  D
) ( 1st `  z
) )  X.  (
( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
197 opelxp 5146 . . . . . . 7  |-  ( <.
( 1st `  g
) ,  ( 2nd `  g ) >.  e.  ( ( ( 1st `  y
) ( C Nat  D
) ( 1st `  z
) )  X.  (
( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) )  <->  ( ( 1st `  g )  e.  ( ( 1st `  y
) ( C Nat  D
) ( 1st `  z
) )  /\  ( 2nd `  g )  e.  ( ( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
198196, 197sylib 208 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( 1st `  g
)  e.  ( ( 1st `  y ) ( C Nat  D ) ( 1st `  z
) )  /\  ( 2nd `  g )  e.  ( ( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
1991, 19, 163, 164, 7, 170, 176, 182, 190, 198evlfcllem 16861 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. ( 2nd `  E
) <. ( 1st `  z
) ,  ( 2nd `  z ) >. ) `  ( <. ( 1st `  g
) ,  ( 2nd `  g ) >. ( <. <. ( 1st `  x
) ,  ( 2nd `  x ) >. ,  <. ( 1st `  y ) ,  ( 2nd `  y
) >. >. (comp `  ( Q  X.c  C ) ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
)  =  ( ( ( <. ( 1st `  y
) ,  ( 2nd `  y ) >. ( 2nd `  E ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
( <. ( ( 1st `  E ) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) ,  ( ( 1st `  E
) `  <. ( 1st `  y ) ,  ( 2nd `  y )
>. ) >. (comp `  D
) ( ( 1st `  E ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) ) ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  E ) <.
( 1st `  y
) ,  ( 2nd `  y ) >. ) `  <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
) )
200167, 179oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( x ( 2nd `  E ) z )  =  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. ( 2nd `  E
) <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
201167, 173opeq12d 4410 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  <. x ,  y >.  =  <. <. ( 1st `  x
) ,  ( 2nd `  x ) >. ,  <. ( 1st `  y ) ,  ( 2nd `  y
) >. >. )
202201, 179oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( <. x ,  y
>. (comp `  ( Q  X.c  C ) ) z )  =  ( <. <. ( 1st `  x
) ,  ( 2nd `  x ) >. ,  <. ( 1st `  y ) ,  ( 2nd `  y
) >. >. (comp `  ( Q  X.c  C ) ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. )
)
203202, 195, 187oveq123d 6671 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( g ( <.
x ,  y >.
(comp `  ( Q  X.c  C ) ) z ) f )  =  ( <. ( 1st `  g
) ,  ( 2nd `  g ) >. ( <. <. ( 1st `  x
) ,  ( 2nd `  x ) >. ,  <. ( 1st `  y ) ,  ( 2nd `  y
) >. >. (comp `  ( Q  X.c  C ) ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
)
204200, 203fveq12d 6197 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( x ( 2nd `  E ) z ) `  (
g ( <. x ,  y >. (comp `  ( Q  X.c  C ) ) z ) f ) )  =  ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  E ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) `  ( <. ( 1st `  g
) ,  ( 2nd `  g ) >. ( <. <. ( 1st `  x
) ,  ( 2nd `  x ) >. ,  <. ( 1st `  y ) ,  ( 2nd `  y
) >. >. (comp `  ( Q  X.c  C ) ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
) )
205167fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( 1st `  E
) `  x )  =  ( ( 1st `  E ) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) )
206173fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( 1st `  E
) `  y )  =  ( ( 1st `  E ) `  <. ( 1st `  y ) ,  ( 2nd `  y
) >. ) )
207205, 206opeq12d 4410 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  ->  <. ( ( 1st `  E
) `  x ) ,  ( ( 1st `  E ) `  y
) >.  =  <. (
( 1st `  E
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. ) ,  ( ( 1st `  E ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. ) >. )
208179fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( 1st `  E
) `  z )  =  ( ( 1st `  E ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
209207, 208oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( <. ( ( 1st `  E ) `  x
) ,  ( ( 1st `  E ) `
 y ) >.
(comp `  D )
( ( 1st `  E
) `  z )
)  =  ( <.
( ( 1st `  E
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. ) ,  ( ( 1st `  E ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. ) >. (comp `  D )
( ( 1st `  E
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. ) ) )
210173, 179oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( y ( 2nd `  E ) z )  =  ( <. ( 1st `  y ) ,  ( 2nd `  y
) >. ( 2nd `  E
) <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
211210, 195fveq12d 6197 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( y ( 2nd `  E ) z ) `  g
)  =  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >. ( 2nd `  E ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
)
212167, 173oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( x ( 2nd `  E ) y )  =  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. ( 2nd `  E
) <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
213212, 187fveq12d 6197 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( x ( 2nd `  E ) y ) `  f
)  =  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  E ) <.
( 1st `  y
) ,  ( 2nd `  y ) >. ) `  <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
)
214209, 211, 213oveq123d 6671 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( ( y ( 2nd `  E
) z ) `  g ) ( <.
( ( 1st `  E
) `  x ) ,  ( ( 1st `  E ) `  y
) >. (comp `  D
) ( ( 1st `  E ) `  z
) ) ( ( x ( 2nd `  E
) y ) `  f ) )  =  ( ( ( <.
( 1st `  y
) ,  ( 2nd `  y ) >. ( 2nd `  E ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
( <. ( ( 1st `  E ) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) ,  ( ( 1st `  E
) `  <. ( 1st `  y ) ,  ( 2nd `  y )
>. ) >. (comp `  D
) ( ( 1st `  E ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) ) ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  E ) <.
( 1st `  y
) ,  ( 2nd `  y ) >. ) `  <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
) )
215199, 204, 2143eqtr4d 2666 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( C  Func  D )  X.  ( Base `  C ) )  /\  y  e.  ( ( C  Func  D )  X.  ( Base `  C
) )  /\  z  e.  ( ( C  Func  D )  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( Q  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( Q  X.c  C ) ) z ) ) )  -> 
( ( x ( 2nd `  E ) z ) `  (
g ( <. x ,  y >. (comp `  ( Q  X.c  C ) ) z ) f ) )  =  ( ( ( y ( 2nd `  E ) z ) `  g
) ( <. (
( 1st `  E
) `  x ) ,  ( ( 1st `  E ) `  y
) >. (comp `  D
) ( ( 1st `  E ) `  z
) ) ( ( x ( 2nd `  E
) y ) `  f ) ) )
21621, 22, 23, 24, 25, 26, 27, 6, 29, 3, 44, 55, 121, 162, 215isfuncd 16525 . . 3  |-  ( ph  ->  ( 1st `  E
) ( ( Q  X.c  C )  Func  D
) ( 2nd `  E
) )
217 df-br 4654 . . 3  |-  ( ( 1st `  E ) ( ( Q  X.c  C
)  Func  D )
( 2nd `  E
)  <->  <. ( 1st `  E
) ,  ( 2nd `  E ) >.  e.  ( ( Q  X.c  C ) 
Func  D ) )
218216, 217sylib 208 . 2  |-  ( ph  -> 
<. ( 1st `  E
) ,  ( 2nd `  E ) >.  e.  ( ( Q  X.c  C ) 
Func  D ) )
21917, 218eqeltrd 2701 1  |-  ( ph  ->  E  e.  ( ( Q  X.c  C )  Func  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [_csb 3533   <.cop 4183   class class class wbr 4653    X. cxp 5112    o. ccom 5118   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326    Func cfunc 16514   Nat cnat 16601   FuncCat cfuc 16602    X.c cxpc 16808   evalF cevlf 16849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-nat 16603  df-fuc 16604  df-xpc 16812  df-evlf 16853
This theorem is referenced by:  uncfcl  16875  uncf1  16876  uncf2  16877  yonedalem1  16912
  Copyright terms: Public domain W3C validator