MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expneg Structured version   Visualization version   Unicode version

Theorem expneg 12868
Description: Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expneg  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )

Proof of Theorem expneg
StepHypRef Expression
1 elnn0 11294 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnne0 11053 . . . . . . . 8  |-  ( N  e.  NN  ->  N  =/=  0 )
32adantl 482 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  =/=  0 )
4 nncn 11028 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
54adantl 482 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  CC )
65negeq0d 10384 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  =  0  <->  -u N  =  0
) )
76necon3abid 2830 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  =/=  0  <->  -.  -u N  =  0
) )
83, 7mpbid 222 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  -u N  =  0 )
98iffalsed 4097 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )
10 nnnn0 11299 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
1110adantl 482 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN0 )
12 nn0nlt0 11319 . . . . . . . 8  |-  ( N  e.  NN0  ->  -.  N  <  0 )
1311, 12syl 17 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  N  <  0
)
1411nn0red 11352 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  RR )
1514lt0neg1d 10597 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  <  0  <->  0  <  -u N ) )
1613, 15mtbid 314 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  0  <  -u N
)
1716iffalsed 4097 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( 0  <  -u N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u -u N ) ) )
185negnegd 10383 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  -> 
-u -u N  =  N )
1918fveq2d 6195 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  -u -u N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
2019oveq2d 6666 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) ) )
219, 17, 203eqtrd 2660 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ) )
22 nnnegz 11380 . . . . 5  |-  ( N  e.  NN  ->  -u N  e.  ZZ )
23 expval 12862 . . . . 5  |-  ( ( A  e.  CC  /\  -u N  e.  ZZ )  ->  ( A ^ -u N )  =  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
2422, 23sylan2 491 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ -u N
)  =  if (
-u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
25 expnnval 12863 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
2625oveq2d 6666 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( 1  /  ( A ^ N ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ) )
2721, 24, 263eqtr4d 2666 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )
28 1div1e1 10717 . . . . 5  |-  ( 1  /  1 )  =  1
2928eqcomi 2631 . . . 4  |-  1  =  ( 1  / 
1 )
30 negeq 10273 . . . . . . 7  |-  ( N  =  0  ->  -u N  =  -u 0 )
31 neg0 10327 . . . . . . 7  |-  -u 0  =  0
3230, 31syl6eq 2672 . . . . . 6  |-  ( N  =  0  ->  -u N  =  0 )
3332oveq2d 6666 . . . . 5  |-  ( N  =  0  ->  ( A ^ -u N )  =  ( A ^
0 ) )
34 exp0 12864 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3533, 34sylan9eqr 2678 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ -u N )  =  1 )
36 oveq2 6658 . . . . . 6  |-  ( N  =  0  ->  ( A ^ N )  =  ( A ^ 0 ) )
3736, 34sylan9eqr 2678 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ N )  =  1 )
3837oveq2d 6666 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( 1  / 
( A ^ N
) )  =  ( 1  /  1 ) )
3929, 35, 383eqtr4a 2682 . . 3  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
4027, 39jaodan 826 . 2  |-  ( ( A  e.  CC  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )
411, 40sylan2b 492 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   {csn 4177   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377    seqcseq 12801   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-seq 12802  df-exp 12861
This theorem is referenced by:  expneg2  12869  expn1  12870  expnegz  12894  efexp  14831  pcexp  15564  aaliou3lem8  24100  basellem3  24809  basellem4  24810  basellem8  24814  ex-exp  27307  dvtan  33460  irrapxlem5  37390  pellexlem2  37394  nn0digval  42394
  Copyright terms: Public domain W3C validator