Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omptsn Structured version   Visualization version   Unicode version

Theorem f1omptsn 33184
Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020.)
Hypotheses
Ref Expression
f1omptsn.f  |-  F  =  ( x  e.  A  |->  { x } )
f1omptsn.r  |-  R  =  { u  |  E. x  e.  A  u  =  { x } }
Assertion
Ref Expression
f1omptsn  |-  F : A
-1-1-onto-> R
Distinct variable group:    u, A, x
Allowed substitution hints:    R( x, u)    F( x, u)

Proof of Theorem f1omptsn
Dummy variables  a 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4187 . . . . . 6  |-  ( x  =  a  ->  { x }  =  { a } )
21cbvmptv 4750 . . . . 5  |-  ( x  e.  A  |->  { x } )  =  ( a  e.  A  |->  { a } )
32eqcomi 2631 . . . 4  |-  ( a  e.  A  |->  { a } )  =  ( x  e.  A  |->  { x } )
4 id 22 . . . . . . . 8  |-  ( u  =  z  ->  u  =  z )
54, 1eqeqan12d 2638 . . . . . . 7  |-  ( ( u  =  z  /\  x  =  a )  ->  ( u  =  {
x }  <->  z  =  { a } ) )
65cbvrexdva 3178 . . . . . 6  |-  ( u  =  z  ->  ( E. x  e.  A  u  =  { x } 
<->  E. a  e.  A  z  =  { a } ) )
76cbvabv 2747 . . . . 5  |-  { u  |  E. x  e.  A  u  =  { x } }  =  {
z  |  E. a  e.  A  z  =  { a } }
87eqcomi 2631 . . . 4  |-  { z  |  E. a  e.  A  z  =  {
a } }  =  { u  |  E. x  e.  A  u  =  { x } }
93, 8f1omptsnlem 33183 . . 3  |-  ( a  e.  A  |->  { a } ) : A -1-1-onto-> {
z  |  E. a  e.  A  z  =  { a } }
10 f1omptsn.r . . . . 5  |-  R  =  { u  |  E. x  e.  A  u  =  { x } }
1110, 7eqtri 2644 . . . 4  |-  R  =  { z  |  E. a  e.  A  z  =  { a } }
12 f1oeq3 6129 . . . 4  |-  ( R  =  { z  |  E. a  e.  A  z  =  { a } }  ->  ( ( a  e.  A  |->  { a } ) : A -1-1-onto-> R  <->  ( a  e.  A  |->  { a } ) : A -1-1-onto-> { z  |  E. a  e.  A  z  =  {
a } } ) )
1311, 12ax-mp 5 . . 3  |-  ( ( a  e.  A  |->  { a } ) : A -1-1-onto-> R  <->  ( a  e.  A  |->  { a } ) : A -1-1-onto-> { z  |  E. a  e.  A  z  =  {
a } } )
149, 13mpbir 221 . 2  |-  ( a  e.  A  |->  { a } ) : A -1-1-onto-> R
15 f1omptsn.f . . . 4  |-  F  =  ( x  e.  A  |->  { x } )
1615, 2eqtri 2644 . . 3  |-  F  =  ( a  e.  A  |->  { a } )
17 f1oeq1 6127 . . 3  |-  ( F  =  ( a  e.  A  |->  { a } )  ->  ( F : A -1-1-onto-> R  <->  ( a  e.  A  |->  { a } ) : A -1-1-onto-> R ) )
1816, 17ax-mp 5 . 2  |-  ( F : A -1-1-onto-> R  <->  ( a  e.  A  |->  { a } ) : A -1-1-onto-> R )
1914, 18mpbir 221 1  |-  F : A
-1-1-onto-> R
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483   {cab 2608   E.wrex 2913   {csn 4177    |-> cmpt 4729   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator