MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem5 Structured version   Visualization version   Unicode version

Theorem psgnunilem5 17914
Description: Lemma for psgnuni 17919. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving  A in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g  |-  G  =  ( SymGrp `  D )
psgnunilem2.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem2.d  |-  ( ph  ->  D  e.  V )
psgnunilem2.w  |-  ( ph  ->  W  e. Word  T )
psgnunilem2.id  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
psgnunilem2.l  |-  ( ph  ->  ( # `  W
)  =  L )
psgnunilem2.ix  |-  ( ph  ->  I  e.  ( 0..^ L ) )
psgnunilem2.a  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
psgnunilem2.al  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
Assertion
Ref Expression
psgnunilem5  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ L ) )
Distinct variable groups:    A, k    k, G    k, I    k, W
Allowed substitution hints:    ph( k)    D( k)    T( k)    L( k)    V( k)

Proof of Theorem psgnunilem5
Dummy variables  j 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3919 . . . 4  |-  -.  A  e.  (/)
2 psgnunilem2.id . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
32difeq1d 3727 . . . . . . 7  |-  ( ph  ->  ( ( G  gsumg  W ) 
\  _I  )  =  ( (  _I  |`  D ) 
\  _I  ) )
43dmeqd 5326 . . . . . 6  |-  ( ph  ->  dom  ( ( G 
gsumg  W )  \  _I  )  =  dom  ( (  _I  |`  D )  \  _I  ) )
5 resss 5422 . . . . . . . . 9  |-  (  _I  |`  D )  C_  _I
6 ssdif0 3942 . . . . . . . . 9  |-  ( (  _I  |`  D )  C_  _I  <->  ( (  _I  |`  D )  \  _I  )  =  (/) )
75, 6mpbi 220 . . . . . . . 8  |-  ( (  _I  |`  D )  \  _I  )  =  (/)
87dmeqi 5325 . . . . . . 7  |-  dom  (
(  _I  |`  D ) 
\  _I  )  =  dom  (/)
9 dm0 5339 . . . . . . 7  |-  dom  (/)  =  (/)
108, 9eqtri 2644 . . . . . 6  |-  dom  (
(  _I  |`  D ) 
\  _I  )  =  (/)
114, 10syl6eq 2672 . . . . 5  |-  ( ph  ->  dom  ( ( G 
gsumg  W )  \  _I  )  =  (/) )
1211eleq2d 2687 . . . 4  |-  ( ph  ->  ( A  e.  dom  ( ( G  gsumg  W ) 
\  _I  )  <->  A  e.  (/) ) )
131, 12mtbiri 317 . . 3  |-  ( ph  ->  -.  A  e.  dom  ( ( G  gsumg  W ) 
\  _I  ) )
14 psgnunilem2.d . . . . . . . . 9  |-  ( ph  ->  D  e.  V )
15 psgnunilem2.g . . . . . . . . . 10  |-  G  =  ( SymGrp `  D )
1615symggrp 17820 . . . . . . . . 9  |-  ( D  e.  V  ->  G  e.  Grp )
17 grpmnd 17429 . . . . . . . . 9  |-  ( G  e.  Grp  ->  G  e.  Mnd )
1814, 16, 173syl 18 . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
19 psgnunilem2.t . . . . . . . . . . . 12  |-  T  =  ran  (pmTrsp `  D
)
20 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
2119, 15, 20symgtrf 17889 . . . . . . . . . . 11  |-  T  C_  ( Base `  G )
22 sswrd 13313 . . . . . . . . . . 11  |-  ( T 
C_  ( Base `  G
)  -> Word  T  C_ Word  ( Base `  G ) )
2321, 22mp1i 13 . . . . . . . . . 10  |-  ( ph  -> Word  T  C_ Word  ( Base `  G
) )
24 psgnunilem2.w . . . . . . . . . 10  |-  ( ph  ->  W  e. Word  T )
2523, 24sseldd 3604 . . . . . . . . 9  |-  ( ph  ->  W  e. Word  ( Base `  G ) )
26 swrdcl 13419 . . . . . . . . 9  |-  ( W  e. Word  ( Base `  G
)  ->  ( W substr  <.
0 ,  I >. )  e. Word  ( Base `  G
) )
2725, 26syl 17 . . . . . . . 8  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G ) )
2820gsumwcl 17377 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G ) )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G ) )
2918, 27, 28syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
) )
3015, 20symgbasf1o 17803 . . . . . . 7  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D
)
3129, 30syl 17 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D )
3231adantr 481 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D )
33 wrdf 13310 . . . . . . . . . 10  |-  ( W  e. Word  T  ->  W : ( 0..^ (
# `  W )
) --> T )
3424, 33syl 17 . . . . . . . . 9  |-  ( ph  ->  W : ( 0..^ ( # `  W
) ) --> T )
35 psgnunilem2.ix . . . . . . . . . 10  |-  ( ph  ->  I  e.  ( 0..^ L ) )
36 psgnunilem2.l . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  =  L )
3736oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( 0..^ ( # `  W ) )  =  ( 0..^ L ) )
3835, 37eleqtrrd 2704 . . . . . . . . 9  |-  ( ph  ->  I  e.  ( 0..^ ( # `  W
) ) )
3934, 38ffvelrnd 6360 . . . . . . . 8  |-  ( ph  ->  ( W `  I
)  e.  T )
4021, 39sseldi 3601 . . . . . . 7  |-  ( ph  ->  ( W `  I
)  e.  ( Base `  G ) )
4115, 20symgbasf1o 17803 . . . . . . 7  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( W `  I ) : D -1-1-onto-> D
)
4240, 41syl 17 . . . . . 6  |-  ( ph  ->  ( W `  I
) : D -1-1-onto-> D )
4342adantr 481 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W `  I ) : D -1-1-onto-> D )
4415, 20symgsssg 17887 . . . . . . . . . . . 12  |-  ( D  e.  V  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubGrp `  G ) )
45 subgsubm 17616 . . . . . . . . . . . 12  |-  ( { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubGrp `  G
)  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubMnd `  G ) )
4614, 44, 453syl 18 . . . . . . . . . . 11  |-  ( ph  ->  { j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  e.  (SubMnd `  G ) )
4746adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubMnd `  G ) )
48 fzossfz 12488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0..^ L )  C_  (
0 ... L )
4948, 35sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  I  e.  ( 0 ... L ) )
50 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  ( 0 ... L )  ->  L  e.  ( ZZ>= `  I )
)
5149, 50syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  L  e.  ( ZZ>= `  I ) )
5236, 51eqeltrd 2701 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( # `  W
)  e.  ( ZZ>= `  I ) )
53 fzoss2 12496 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  W )  e.  ( ZZ>= `  I )  ->  ( 0..^ I ) 
C_  ( 0..^ (
# `  W )
) )
5452, 53syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0..^ I ) 
C_  ( 0..^ (
# `  W )
) )
5554sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  s  e.  ( 0..^ ( # `  W
) ) )
5634ffvelrnda 6359 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  s
)  e.  T )
5721, 56sseldi 3601 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  s
)  e.  ( Base `  G ) )
5855, 57syldan 487 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  ( W `  s )  e.  (
Base `  G )
)
59 psgnunilem2.al . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
60 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  s  ->  ( W `  k )  =  ( W `  s ) )
6160difeq1d 3727 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  s  ->  (
( W `  k
)  \  _I  )  =  ( ( W `
 s )  \  _I  ) )
6261dmeqd 5326 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  s  ->  dom  ( ( W `  k )  \  _I  )  =  dom  ( ( W `  s ) 
\  _I  ) )
6362eleq2d 2687 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  s  ->  ( A  e.  dom  ( ( W `  k ) 
\  _I  )  <->  A  e.  dom  ( ( W `  s )  \  _I  ) ) )
6463notbid 308 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  s  ->  ( -.  A  e.  dom  ( ( W `  k )  \  _I  ) 
<->  -.  A  e.  dom  ( ( W `  s )  \  _I  ) ) )
6564cbvralv 3171 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  ( 0..^ I )  -.  A  e.  dom  ( ( W `
 k )  \  _I  )  <->  A. s  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  s
)  \  _I  )
)
6659, 65sylib 208 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. s  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  s
)  \  _I  )
)
6766r19.21bi 2932 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  -.  A  e.  dom  ( ( W `  s )  \  _I  ) )
68 difeq1 3721 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  ( W `  s )  ->  (
j  \  _I  )  =  ( ( W `
 s )  \  _I  ) )
6968dmeqd 5326 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( W `  s )  ->  dom  ( j  \  _I  )  =  dom  ( ( W `  s ) 
\  _I  ) )
7069sseq1d 3632 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( W `  s )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  dom  ( ( W `  s ) 
\  _I  )  C_  ( _V  \  { A } ) ) )
71 disj2 4024 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( ( W `
 s )  \  _I  )  i^i  { A } )  =  (/)  <->  dom  ( ( W `  s )  \  _I  )  C_  ( _V  \  { A } ) )
72 disjsn 4246 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( ( W `
 s )  \  _I  )  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  ( ( W `  s ) 
\  _I  ) )
7371, 72bitr3i 266 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( ( W `  s )  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) )
7470, 73syl6bb 276 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( W `  s )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) ) )
7574elrab 3363 . . . . . . . . . . . . . . 15  |-  ( ( W `  s )  e.  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  <->  ( ( W `  s )  e.  ( Base `  G
)  /\  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) ) )
7658, 67, 75sylanbrc 698 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  ( W `  s )  e.  {
j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) } )
77 eqid 2622 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0..^ I )  |->  ( W `  s ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) )
7876, 77fmptd 6385 . . . . . . . . . . . . 13  |-  ( ph  ->  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
7936oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0 ... ( # `
 W ) )  =  ( 0 ... L ) )
8049, 79eleqtrrd 2704 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  I  e.  ( 0 ... ( # `  W
) ) )
81 swrd0val 13421 . . . . . . . . . . . . . . . 16  |-  ( ( W  e. Word  T  /\  I  e.  ( 0 ... ( # `  W
) ) )  -> 
( W substr  <. 0 ,  I >. )  =  ( W  |`  ( 0..^ I ) ) )
8224, 80, 81syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  =  ( W  |`  ( 0..^ I ) ) )
8334feqmptd 6249 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W  =  ( s  e.  ( 0..^ (
# `  W )
)  |->  ( W `  s ) ) )
8483reseq1d 5395 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( W  |`  (
0..^ I ) )  =  ( ( s  e.  ( 0..^ (
# `  W )
)  |->  ( W `  s ) )  |`  ( 0..^ I ) ) )
85 resmpt 5449 . . . . . . . . . . . . . . . 16  |-  ( ( 0..^ I )  C_  ( 0..^ ( # `  W
) )  ->  (
( s  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 s ) )  |`  ( 0..^ I ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) )
8652, 53, 853syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( s  e.  ( 0..^ ( # `  W ) )  |->  ( W `  s ) )  |`  ( 0..^ I ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) )
8782, 84, 863eqtrd 2660 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  =  ( s  e.  ( 0..^ I )  |->  ( W `
 s ) ) )
8887feq1d 6030 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) }  <-> 
( s  e.  ( 0..^ I )  |->  ( W `  s ) ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } ) )
8978, 88mpbird 247 . . . . . . . . . . . 12  |-  ( ph  ->  ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) } )
9089adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
91 iswrdi 13309 . . . . . . . . . . 11  |-  ( ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  ->  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
9290, 91syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
93 gsumwsubmcl 17375 . . . . . . . . . 10  |-  ( ( { j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  e.  (SubMnd `  G )  /\  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
9447, 92, 93syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) } )
95 difeq1 3721 . . . . . . . . . . . . . 14  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  ( j  \  _I  )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )
)
9695dmeqd 5326 . . . . . . . . . . . . 13  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  dom  ( j 
\  _I  )  =  dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
9796sseq1d 3632 . . . . . . . . . . . 12  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V 
\  { A }
) ) )
9897elrab 3363 . . . . . . . . . . 11  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  <->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  /\  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V 
\  { A }
) ) )
9998simprbi 480 . . . . . . . . . 10  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  ->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } ) )
100 disj2 4024 . . . . . . . . . . 11  |-  ( ( dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  i^i  { A } )  =  (/)  <->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } ) )
101 disjsn 4246 . . . . . . . . . . 11  |-  ( ( dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
102100, 101bitr3i 266 . . . . . . . . . 10  |-  ( dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
10399, 102sylib 208 . . . . . . . . 9  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  ->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
10494, 103syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
105 psgnunilem2.a . . . . . . . . 9  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
106105adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( W `
 I )  \  _I  ) )
107104, 106jca 554 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) )
108107olcd 408 . . . . . 6  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  -.  A  e.  dom  ( ( W `  I )  \  _I  ) )  \/  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) ) )
109 excxor 1469 . . . . . 6  |-  ( ( A  e.  dom  (
( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) )  <->  ( ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  -.  A  e.  dom  ( ( W `
 I )  \  _I  ) )  \/  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) ) )
110108, 109sylibr 224 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) ) )
111 f1omvdco3 17869 . . . . 5  |-  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D  /\  ( W `
 I ) : D -1-1-onto-> D  /\  ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) ) )  ->  A  e.  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
11232, 43, 110, 111syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
11324adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  e. Word  T )
114 elfzo0 12508 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 0..^ L )  <->  ( I  e. 
NN0  /\  L  e.  NN  /\  I  <  L
) )
115114simp2bi 1077 . . . . . . . . . . . . . 14  |-  ( I  e.  ( 0..^ L )  ->  L  e.  NN )
11635, 115syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  NN )
11736, 116eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  W
)  e.  NN )
118 wrdfin 13323 . . . . . . . . . . . . 13  |-  ( W  e. Word  T  ->  W  e.  Fin )
119 hashnncl 13157 . . . . . . . . . . . . 13  |-  ( W  e.  Fin  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
12024, 118, 1193syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  W
)  e.  NN  <->  W  =/=  (/) ) )
121117, 120mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  W  =/=  (/) )
122121adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =/=  (/) )
123 swrdccatwrd 13468 . . . . . . . . . . 11  |-  ( ( W  e. Word  T  /\  W  =/=  (/) )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  <" ( lastS  `  W ) "> )  =  W )
124123eqcomd 2628 . . . . . . . . . 10  |-  ( ( W  e. Word  T  /\  W  =/=  (/) )  ->  W  =  ( ( W substr  <. 0 ,  ( (
# `  W )  -  1 ) >.
) ++  <" ( lastS  `  W
) "> )
)
125113, 122, 124syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =  ( ( W substr  <. 0 ,  ( (
# `  W )  -  1 ) >.
) ++  <" ( lastS  `  W
) "> )
)
12636oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  W
)  -  1 )  =  ( L  - 
1 ) )
127126adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( # `  W )  -  1 )  =  ( L  -  1 ) )
128116nncnd 11036 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  CC )
129 1cnd 10056 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  CC )
130 elfzoelz 12470 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 0..^ L )  ->  I  e.  ZZ )
13135, 130syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  I  e.  ZZ )
132131zcnd 11483 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  CC )
133128, 129, 132subadd2d 10411 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( L  - 
1 )  =  I  <-> 
( I  +  1 )  =  L ) )
134133biimpar 502 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( L  -  1 )  =  I )
135127, 134eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( # `  W )  -  1 )  =  I )
136 opeq2 4403 . . . . . . . . . . . . 13  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  <. 0 ,  ( ( # `  W )  -  1 ) >.  =  <. 0 ,  I >. )
137136oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( W substr  <. 0 ,  I >. ) )
138137adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 W )  - 
1 )  =  I )  ->  ( W substr  <.
0 ,  ( (
# `  W )  -  1 ) >.
)  =  ( W substr  <. 0 ,  I >. ) )
139 lsw 13351 . . . . . . . . . . . . . 14  |-  ( W  e. Word  T  ->  ( lastS  `  W )  =  ( W `  ( (
# `  W )  -  1 ) ) )
14024, 139syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( lastS  `  W )  =  ( W `  ( ( # `  W
)  -  1 ) ) )
141 fveq2 6191 . . . . . . . . . . . . 13  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( W `  I
) )
142140, 141sylan9eq 2676 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 W )  - 
1 )  =  I )  ->  ( lastS  `  W
)  =  ( W `
 I ) )
143142s1eqd 13381 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 W )  - 
1 )  =  I )  ->  <" ( lastS  `  W ) ">  =  <" ( W `
 I ) "> )
144138, 143oveq12d 6668 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 W )  - 
1 )  =  I )  ->  ( ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  <" ( lastS  `  W ) "> )  =  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `
 I ) "> ) )
145135, 144syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  <" ( lastS  `  W ) "> )  =  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `
 I ) "> ) )
146125, 145eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =  ( ( W substr  <. 0 ,  I >. ) ++ 
<" ( W `  I ) "> ) )
147146oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  W )  =  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `  I ) "> ) ) )
14840s1cld 13383 . . . . . . . . 9  |-  ( ph  ->  <" ( W `
 I ) ">  e. Word  ( Base `  G ) )
149 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
15020, 149gsumccat 17378 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G )  /\  <" ( W `  I ) ">  e. Word  ( Base `  G
) )  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
15118, 27, 148, 150syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
152151adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
15320gsumws1 17376 . . . . . . . . . . 11  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( G  gsumg  <" ( W `  I ) "> )  =  ( W `  I ) )
15440, 153syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg 
<" ( W `  I ) "> )  =  ( W `  I ) )
155154oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( W `  I ) ) )
15615, 20, 149symgov 17810 . . . . . . . . . 10  |-  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  /\  ( W `  I )  e.  (
Base `  G )
)  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G ) ( W `  I
) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
15729, 40, 156syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( W `  I ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `
 I ) ) )
158155, 157eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `
 I ) ) )
159158adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G ) ( G  gsumg 
<" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
160147, 152, 1593eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  W )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
161160difeq1d 3727 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( G  gsumg  W )  \  _I  )  =  ( (
( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
162161dmeqd 5326 . . . 4  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  dom  ( ( G  gsumg  W ) 
\  _I  )  =  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
163112, 162eleqtrrd 2704 . . 3  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( G 
gsumg  W )  \  _I  ) )
16413, 163mtand 691 . 2  |-  ( ph  ->  -.  ( I  + 
1 )  =  L )
165 fzostep1 12584 . . . 4  |-  ( I  e.  ( 0..^ L )  ->  ( (
I  +  1 )  e.  ( 0..^ L )  \/  ( I  +  1 )  =  L ) )
16635, 165syl 17 . . 3  |-  ( ph  ->  ( ( I  + 
1 )  e.  ( 0..^ L )  \/  ( I  +  1 )  =  L ) )
167166ord 392 . 2  |-  ( ph  ->  ( -.  ( I  +  1 )  e.  ( 0..^ L )  ->  ( I  + 
1 )  =  L ) )
168164, 167mt3d 140 1  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ L ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/_ wxo 1464    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101   Mndcmnd 17294  SubMndcsubmnd 17334   Grpcgrp 17422  SubGrpcsubg 17588   SymGrpcsymg 17797  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-symg 17798  df-pmtr 17862
This theorem is referenced by:  psgnunilem2  17915
  Copyright terms: Public domain W3C validator