MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim Structured version   Visualization version   Unicode version

Theorem fbflim 21780
Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3  |-  F  =  ( X filGen B )
Assertion
Ref Expression
fbflim  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  E. y  e.  B  y  C_  x ) ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, J, y    x, X, y   
x, F, y

Proof of Theorem fbflim
StepHypRef Expression
1 fbflim.3 . . . 4  |-  F  =  ( X filGen B )
2 fgcl 21682 . . . 4  |-  ( B  e.  ( fBas `  X
)  ->  ( X filGen B )  e.  ( Fil `  X ) )
31, 2syl5eqel 2705 . . 3  |-  ( B  e.  ( fBas `  X
)  ->  F  e.  ( Fil `  X ) )
4 flimopn 21779 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) ) )
53, 4sylan2 491 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) ) )
61eleq2i 2693 . . . . . . 7  |-  ( x  e.  F  <->  x  e.  ( X filGen B ) )
7 elfg 21675 . . . . . . . 8  |-  ( B  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen B )  <-> 
( x  C_  X  /\  E. y  e.  B  y  C_  x ) ) )
87ad3antlr 767 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  (
x  e.  ( X
filGen B )  <->  ( x  C_  X  /\  E. y  e.  B  y  C_  x ) ) )
96, 8syl5bb 272 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  (
x  e.  F  <->  ( x  C_  X  /\  E. y  e.  B  y  C_  x ) ) )
10 simpll 790 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
11 toponss 20731 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
1210, 11sylan 488 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  x  C_  X )
1312biantrurd 529 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  ( E. y  e.  B  y  C_  x  <->  ( x  C_  X  /\  E. y  e.  B  y  C_  x ) ) )
149, 13bitr4d 271 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  (
x  e.  F  <->  E. y  e.  B  y  C_  x ) )
1514imbi2d 330 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  (
( A  e.  x  ->  x  e.  F )  <-> 
( A  e.  x  ->  E. y  e.  B  y  C_  x ) ) )
1615ralbidva 2985 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  ( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  <->  A. x  e.  J  ( A  e.  x  ->  E. y  e.  B  y  C_  x ) ) )
1716pm5.32da 673 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  (
( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) )  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  E. y  e.  B  y  C_  x ) ) ) )
185, 17bitrd 268 1  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  E. y  e.  B  y  C_  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ` cfv 5888  (class class class)co 6650   fBascfbas 19734   filGencfg 19735  TopOnctopon 20715   Filcfil 21649    fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-ntr 20824  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by:  fbflim2  21781
  Copyright terms: Public domain W3C validator