MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsbas Structured version   Visualization version   Unicode version

Theorem fclsbas 21825
Description: Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsbas.f  |-  F  =  ( X filGen B )
Assertion
Ref Expression
fclsbas  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) ) )
Distinct variable groups:    A, o    o, s, B    o, F    o, J    o, X
Allowed substitution hints:    A( s)    F( s)    J( s)    X( s)

Proof of Theorem fclsbas
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fclsbas.f . . . 4  |-  F  =  ( X filGen B )
2 fgcl 21682 . . . . 5  |-  ( B  e.  ( fBas `  X
)  ->  ( X filGen B )  e.  ( Fil `  X ) )
32adantl 482 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( X filGen B )  e.  ( Fil `  X
) )
41, 3syl5eqel 2705 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  F  e.  ( Fil `  X
) )
5 fclsopn 21818 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t )  =/=  (/) ) ) ) )
64, 5syldan 487 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t )  =/=  (/) ) ) ) )
7 ssfg 21676 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  X
)  ->  B  C_  ( X filGen B ) )
87ad3antlr 767 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  ->  B  C_  ( X filGen B ) )
98, 1syl6sseqr 3652 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  ->  B  C_  F )
10 ssralv 3666 . . . . . . . . 9  |-  ( B 
C_  F  ->  ( A. t  e.  F  ( o  i^i  t
)  =/=  (/)  ->  A. t  e.  B  ( o  i^i  t )  =/=  (/) ) )
119, 10syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. t  e.  F  ( o  i^i  t )  =/=  (/)  ->  A. t  e.  B  ( o  i^i  t )  =/=  (/) ) )
12 ineq2 3808 . . . . . . . . . 10  |-  ( t  =  s  ->  (
o  i^i  t )  =  ( o  i^i  s ) )
1312neeq1d 2853 . . . . . . . . 9  |-  ( t  =  s  ->  (
( o  i^i  t
)  =/=  (/)  <->  ( o  i^i  s )  =/=  (/) ) )
1413cbvralv 3171 . . . . . . . 8  |-  ( A. t  e.  B  (
o  i^i  t )  =/=  (/)  <->  A. s  e.  B  ( o  i^i  s
)  =/=  (/) )
1511, 14syl6ib 241 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. t  e.  F  ( o  i^i  t )  =/=  (/)  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) )
161eleq2i 2693 . . . . . . . . . . 11  |-  ( t  e.  F  <->  t  e.  ( X filGen B ) )
17 elfg 21675 . . . . . . . . . . . 12  |-  ( B  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen B )  <-> 
( t  C_  X  /\  E. s  e.  B  s  C_  t ) ) )
1817ad3antlr 767 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( t  e.  ( X filGen B )  <->  ( t  C_  X  /\  E. s  e.  B  s  C_  t ) ) )
1916, 18syl5bb 272 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( t  e.  F  <->  ( t  C_  X  /\  E. s  e.  B  s 
C_  t ) ) )
2019simplbda 654 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  B  e.  ( fBas `  X )
)  /\  A  e.  X )  /\  (
o  e.  J  /\  A  e.  o )
)  /\  t  e.  F )  ->  E. s  e.  B  s  C_  t )
21 r19.29r 3073 . . . . . . . . . . 11  |-  ( ( E. s  e.  B  s  C_  t  /\  A. s  e.  B  (
o  i^i  s )  =/=  (/) )  ->  E. s  e.  B  ( s  C_  t  /\  ( o  i^i  s )  =/=  (/) ) )
22 sslin 3839 . . . . . . . . . . . . 13  |-  ( s 
C_  t  ->  (
o  i^i  s )  C_  ( o  i^i  t
) )
23 ssn0 3976 . . . . . . . . . . . . 13  |-  ( ( ( o  i^i  s
)  C_  ( o  i^i  t )  /\  (
o  i^i  s )  =/=  (/) )  ->  (
o  i^i  t )  =/=  (/) )
2422, 23sylan 488 . . . . . . . . . . . 12  |-  ( ( s  C_  t  /\  ( o  i^i  s
)  =/=  (/) )  -> 
( o  i^i  t
)  =/=  (/) )
2524rexlimivw 3029 . . . . . . . . . . 11  |-  ( E. s  e.  B  ( s  C_  t  /\  ( o  i^i  s
)  =/=  (/) )  -> 
( o  i^i  t
)  =/=  (/) )
2621, 25syl 17 . . . . . . . . . 10  |-  ( ( E. s  e.  B  s  C_  t  /\  A. s  e.  B  (
o  i^i  s )  =/=  (/) )  ->  (
o  i^i  t )  =/=  (/) )
2726ex 450 . . . . . . . . 9  |-  ( E. s  e.  B  s 
C_  t  ->  ( A. s  e.  B  ( o  i^i  s
)  =/=  (/)  ->  (
o  i^i  t )  =/=  (/) ) )
2820, 27syl 17 . . . . . . . 8  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  B  e.  ( fBas `  X )
)  /\  A  e.  X )  /\  (
o  e.  J  /\  A  e.  o )
)  /\  t  e.  F )  ->  ( A. s  e.  B  ( o  i^i  s
)  =/=  (/)  ->  (
o  i^i  t )  =/=  (/) ) )
2928ralrimdva 2969 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. s  e.  B  ( o  i^i  s )  =/=  (/)  ->  A. t  e.  F  ( o  i^i  t )  =/=  (/) ) )
3015, 29impbid 202 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. t  e.  F  ( o  i^i  t )  =/=  (/)  <->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) )
3130anassrs 680 . . . . 5  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  B  e.  ( fBas `  X )
)  /\  A  e.  X )  /\  o  e.  J )  /\  A  e.  o )  ->  ( A. t  e.  F  ( o  i^i  t
)  =/=  (/)  <->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) )
3231pm5.74da 723 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  o  e.  J )  ->  (
( A  e.  o  ->  A. t  e.  F  ( o  i^i  t
)  =/=  (/) )  <->  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) )
3332ralbidva 2985 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t
)  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) )
3433pm5.32da 673 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t
)  =/=  (/) ) )  <-> 
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s
)  =/=  (/) ) ) ) )
356, 34bitrd 268 1  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   ` cfv 5888  (class class class)co 6650   fBascfbas 19734   filGencfg 19735  TopOnctopon 20715   Filcfil 21649    fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-fil 21650  df-fcls 21745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator