MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supnfcls Structured version   Visualization version   Unicode version

Theorem supnfcls 21824
Description: The filter of supersets of  X  \  U does not cluster at any point of the open set  U. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
supnfcls  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  ->  -.  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U )  C_  x } ) )
Distinct variable groups:    x, J    x, X    x, U
Allowed substitution hint:    A( x)

Proof of Theorem supnfcls
StepHypRef Expression
1 disjdif 4040 . 2  |-  ( U  i^i  ( X  \  U ) )  =  (/)
2 simpr 477 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )
3 simpl2 1065 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  U  e.  J )
4 simpl3 1066 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  A  e.  U )
5 difss 3737 . . . . . . 7  |-  ( X 
\  U )  C_  X
6 simpl1 1064 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  J  e.  (TopOn `  X ) )
7 toponmax 20730 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
8 elpw2g 4827 . . . . . . . 8  |-  ( X  e.  J  ->  (
( X  \  U
)  e.  ~P X  <->  ( X  \  U ) 
C_  X ) )
96, 7, 83syl 18 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( ( X  \  U )  e. 
~P X  <->  ( X  \  U )  C_  X
) )
105, 9mpbiri 248 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( X  \  U )  e.  ~P X )
11 ssid 3624 . . . . . . 7  |-  ( X 
\  U )  C_  ( X  \  U )
1211a1i 11 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( X  \  U )  C_  ( X  \  U ) )
13 sseq2 3627 . . . . . . 7  |-  ( x  =  ( X  \  U )  ->  (
( X  \  U
)  C_  x  <->  ( X  \  U )  C_  ( X  \  U ) ) )
1413elrab 3363 . . . . . 6  |-  ( ( X  \  U )  e.  { x  e. 
~P X  |  ( X  \  U ) 
C_  x }  <->  ( ( X  \  U )  e. 
~P X  /\  ( X  \  U )  C_  ( X  \  U ) ) )
1510, 12, 14sylanbrc 698 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( X  \  U )  e.  {
x  e.  ~P X  |  ( X  \  U )  C_  x } )
16 fclsopni 21819 . . . . 5  |-  ( ( A  e.  ( J 
fClus  { x  e.  ~P X  |  ( X  \  U )  C_  x } )  /\  ( U  e.  J  /\  A  e.  U  /\  ( X  \  U )  e.  { x  e. 
~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( U  i^i  ( X  \  U
) )  =/=  (/) )
172, 3, 4, 15, 16syl13anc 1328 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( U  i^i  ( X  \  U
) )  =/=  (/) )
1817ex 450 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  ->  ( A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U )  C_  x } )  ->  ( U  i^i  ( X  \  U ) )  =/=  (/) ) )
1918necon2bd 2810 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  ->  (
( U  i^i  ( X  \  U ) )  =  (/)  ->  -.  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) ) )
201, 19mpi 20 1  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  ->  -.  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U )  C_  x } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   ` cfv 5888  (class class class)co 6650  TopOnctopon 20715    fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-fil 21650  df-fcls 21745
This theorem is referenced by:  fclscf  21829
  Copyright terms: Public domain W3C validator