Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphxp Structured version   Visualization version   Unicode version

Theorem fgraphxp 37789
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphxp  |-  ( F : A --> B  ->  F  =  { x  e.  ( A  X.  B
)  |  ( F `
 ( 1st `  x
) )  =  ( 2nd `  x ) } )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem fgraphxp
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fgraphopab 37788 . 2  |-  ( F : A --> B  ->  F  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) } )
2 vex 3203 . . . . . . 7  |-  a  e. 
_V
3 vex 3203 . . . . . . 7  |-  b  e. 
_V
42, 3op1std 7178 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( 1st `  x
)  =  a )
54fveq2d 6195 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( F `  ( 1st `  x ) )  =  ( F `
 a ) )
62, 3op2ndd 7179 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( 2nd `  x
)  =  b )
75, 6eqeq12d 2637 . . . 4  |-  ( x  =  <. a ,  b
>.  ->  ( ( F `
 ( 1st `  x
) )  =  ( 2nd `  x )  <-> 
( F `  a
)  =  b ) )
87rabxp 5154 . . 3  |-  { x  e.  ( A  X.  B
)  |  ( F `
 ( 1st `  x
) )  =  ( 2nd `  x ) }  =  { <. a ,  b >.  |  ( a  e.  A  /\  b  e.  B  /\  ( F `  a )  =  b ) }
9 df-3an 1039 . . . 4  |-  ( ( a  e.  A  /\  b  e.  B  /\  ( F `  a )  =  b )  <->  ( (
a  e.  A  /\  b  e.  B )  /\  ( F `  a
)  =  b ) )
109opabbii 4717 . . 3  |-  { <. a ,  b >.  |  ( a  e.  A  /\  b  e.  B  /\  ( F `  a )  =  b ) }  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) }
118, 10eqtri 2644 . 2  |-  { x  e.  ( A  X.  B
)  |  ( F `
 ( 1st `  x
) )  =  ( 2nd `  x ) }  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) }
121, 11syl6eqr 2674 1  |-  ( F : A --> B  ->  F  =  { x  e.  ( A  X.  B
)  |  ( F `
 ( 1st `  x
) )  =  ( 2nd `  x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   <.cop 4183   {copab 4712    X. cxp 5112   -->wf 5884   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  hausgraph  37790
  Copyright terms: Public domain W3C validator