Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgreu Structured version   Visualization version   Unicode version

Theorem fgreu 29471
Description: Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
fgreu  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  E! p  e.  F  X  =  ( 1st `  p ) )
Distinct variable groups:    F, p    X, p

Proof of Theorem fgreu
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 funfvop 6329 . . 3  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  <. X ,  ( F `
 X ) >.  e.  F )
2 simplll 798 . . . . . . . 8  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  Fun  F )
3 funrel 5905 . . . . . . . 8  |-  ( Fun 
F  ->  Rel  F )
42, 3syl 17 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  Rel  F )
5 simplr 792 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  p  e.  F )
6 1st2nd 7214 . . . . . . 7  |-  ( ( Rel  F  /\  p  e.  F )  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
74, 5, 6syl2anc 693 . . . . . 6  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
8 simpr 477 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  X  =  ( 1st `  p
) )
9 simpllr 799 . . . . . . . 8  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  X  e.  dom  F )
108opeq1d 4408 . . . . . . . . . 10  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  <. X , 
( 2nd `  p
) >.  =  <. ( 1st `  p ) ,  ( 2nd `  p
) >. )
117, 10eqtr4d 2659 . . . . . . . . 9  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  p  =  <. X ,  ( 2nd `  p )
>. )
1211, 5eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  <. X , 
( 2nd `  p
) >.  e.  F )
13 funopfvb 6239 . . . . . . . . 9  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F `  X )  =  ( 2nd `  p )  <->  <. X ,  ( 2nd `  p ) >.  e.  F
) )
1413biimpar 502 . . . . . . . 8  |-  ( ( ( Fun  F  /\  X  e.  dom  F )  /\  <. X ,  ( 2nd `  p )
>.  e.  F )  -> 
( F `  X
)  =  ( 2nd `  p ) )
152, 9, 12, 14syl21anc 1325 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  ( F `  X )  =  ( 2nd `  p
) )
168, 15opeq12d 4410 . . . . . 6  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  <. X , 
( F `  X
) >.  =  <. ( 1st `  p ) ,  ( 2nd `  p
) >. )
177, 16eqtr4d 2659 . . . . 5  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  p  =  <. X ,  ( F `  X )
>. )
18 simpr 477 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  p  =  <. X ,  ( F `  X )
>. )  ->  p  = 
<. X ,  ( F `
 X ) >.
)
1918fveq2d 6195 . . . . . 6  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  p  =  <. X ,  ( F `  X )
>. )  ->  ( 1st `  p )  =  ( 1st `  <. X , 
( F `  X
) >. ) )
20 fvex 6201 . . . . . . . 8  |-  ( F `
 X )  e. 
_V
21 op1stg 7180 . . . . . . . 8  |-  ( ( X  e.  dom  F  /\  ( F `  X
)  e.  _V )  ->  ( 1st `  <. X ,  ( F `  X ) >. )  =  X )
2220, 21mpan2 707 . . . . . . 7  |-  ( X  e.  dom  F  -> 
( 1st `  <. X ,  ( F `  X ) >. )  =  X )
2322ad3antlr 767 . . . . . 6  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  p  =  <. X ,  ( F `  X )
>. )  ->  ( 1st `  <. X ,  ( F `  X )
>. )  =  X
)
2419, 23eqtr2d 2657 . . . . 5  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  p  =  <. X ,  ( F `  X )
>. )  ->  X  =  ( 1st `  p
) )
2517, 24impbida 877 . . . 4  |-  ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F
)  ->  ( X  =  ( 1st `  p
)  <->  p  =  <. X ,  ( F `  X ) >. )
)
2625ralrimiva 2966 . . 3  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  A. p  e.  F  ( X  =  ( 1st `  p )  <->  p  =  <. X ,  ( F `
 X ) >.
) )
27 eqeq2 2633 . . . . . 6  |-  ( q  =  <. X ,  ( F `  X )
>.  ->  ( p  =  q  <->  p  =  <. X ,  ( F `  X ) >. )
)
2827bibi2d 332 . . . . 5  |-  ( q  =  <. X ,  ( F `  X )
>.  ->  ( ( X  =  ( 1st `  p
)  <->  p  =  q
)  <->  ( X  =  ( 1st `  p
)  <->  p  =  <. X ,  ( F `  X ) >. )
) )
2928ralbidv 2986 . . . 4  |-  ( q  =  <. X ,  ( F `  X )
>.  ->  ( A. p  e.  F  ( X  =  ( 1st `  p
)  <->  p  =  q
)  <->  A. p  e.  F  ( X  =  ( 1st `  p )  <->  p  =  <. X ,  ( F `
 X ) >.
) ) )
3029rspcev 3309 . . 3  |-  ( (
<. X ,  ( F `
 X ) >.  e.  F  /\  A. p  e.  F  ( X  =  ( 1st `  p
)  <->  p  =  <. X ,  ( F `  X ) >. )
)  ->  E. q  e.  F  A. p  e.  F  ( X  =  ( 1st `  p
)  <->  p  =  q
) )
311, 26, 30syl2anc 693 . 2  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  E. q  e.  F  A. p  e.  F  ( X  =  ( 1st `  p )  <->  p  =  q ) )
32 reu6 3395 . 2  |-  ( E! p  e.  F  X  =  ( 1st `  p
)  <->  E. q  e.  F  A. p  e.  F  ( X  =  ( 1st `  p )  <->  p  =  q ) )
3331, 32sylibr 224 1  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  E! p  e.  F  X  =  ( 1st `  p ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   _Vcvv 3200   <.cop 4183   dom cdm 5114   Rel wrel 5119   Fun wfun 5882   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  fcnvgreu  29472
  Copyright terms: Public domain W3C validator