| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fixufil | Structured version Visualization version Unicode version | ||
| Description: The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009.) (Revised by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 29-Jul-2015.) |
| Ref | Expression |
|---|---|
| fixufil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uffix 21725 |
. . . 4
| |
| 2 | 1 | simprd 479 |
. . 3
|
| 3 | 1 | simpld 475 |
. . . 4
|
| 4 | fgcl 21682 |
. . . 4
| |
| 5 | 3, 4 | syl 17 |
. . 3
|
| 6 | 2, 5 | eqeltrd 2701 |
. 2
|
| 7 | undif2 4044 |
. . . . . . . . . 10
| |
| 8 | elpwi 4168 |
. . . . . . . . . . 11
| |
| 9 | ssequn1 3783 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | sylib 208 |
. . . . . . . . . 10
|
| 11 | 7, 10 | syl5req 2669 |
. . . . . . . . 9
|
| 12 | 11 | eleq2d 2687 |
. . . . . . . 8
|
| 13 | 12 | biimpac 503 |
. . . . . . 7
|
| 14 | elun 3753 |
. . . . . . 7
| |
| 15 | 13, 14 | sylib 208 |
. . . . . 6
|
| 16 | 15 | adantll 750 |
. . . . 5
|
| 17 | ibar 525 |
. . . . . . 7
| |
| 18 | 17 | adantl 482 |
. . . . . 6
|
| 19 | difss 3737 |
. . . . . . . . 9
| |
| 20 | elpw2g 4827 |
. . . . . . . . 9
| |
| 21 | 19, 20 | mpbiri 248 |
. . . . . . . 8
|
| 22 | 21 | ad2antrr 762 |
. . . . . . 7
|
| 23 | 22 | biantrurd 529 |
. . . . . 6
|
| 24 | 18, 23 | orbi12d 746 |
. . . . 5
|
| 25 | 16, 24 | mpbid 222 |
. . . 4
|
| 26 | 25 | ralrimiva 2966 |
. . 3
|
| 27 | eleq2 2690 |
. . . . . 6
| |
| 28 | 27 | elrab 3363 |
. . . . 5
|
| 29 | eleq2 2690 |
. . . . . 6
| |
| 30 | 29 | elrab 3363 |
. . . . 5
|
| 31 | 28, 30 | orbi12i 543 |
. . . 4
|
| 32 | 31 | ralbii 2980 |
. . 3
|
| 33 | 26, 32 | sylibr 224 |
. 2
|
| 34 | isufil 21707 |
. 2
| |
| 35 | 6, 33, 34 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-fbas 19743 df-fg 19744 df-fil 21650 df-ufil 21705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |