| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uffix | Structured version Visualization version Unicode version | ||
| Description: Lemma for fixufil 21726 and uffixfr 21727. (Contributed by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| uffix |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4339 |
. . . 4
| |
| 2 | 1 | adantl 482 |
. . 3
|
| 3 | snnzg 4308 |
. . . 4
| |
| 4 | 3 | adantl 482 |
. . 3
|
| 5 | simpl 473 |
. . 3
| |
| 6 | snfbas 21670 |
. . 3
| |
| 7 | 2, 4, 5, 6 | syl3anc 1326 |
. 2
|
| 8 | selpw 4165 |
. . . . . 6
| |
| 9 | 8 | a1i 11 |
. . . . 5
|
| 10 | snex 4908 |
. . . . . . . 8
| |
| 11 | 10 | snid 4208 |
. . . . . . 7
|
| 12 | snssi 4339 |
. . . . . . 7
| |
| 13 | sseq1 3626 |
. . . . . . . 8
| |
| 14 | 13 | rspcev 3309 |
. . . . . . 7
|
| 15 | 11, 12, 14 | sylancr 695 |
. . . . . 6
|
| 16 | intss1 4492 |
. . . . . . . . 9
| |
| 17 | sstr2 3610 |
. . . . . . . . 9
| |
| 18 | 16, 17 | syl 17 |
. . . . . . . 8
|
| 19 | snidg 4206 |
. . . . . . . . . . 11
| |
| 20 | 19 | adantl 482 |
. . . . . . . . . 10
|
| 21 | 10 | intsn 4513 |
. . . . . . . . . 10
|
| 22 | 20, 21 | syl6eleqr 2712 |
. . . . . . . . 9
|
| 23 | ssel 3597 |
. . . . . . . . 9
| |
| 24 | 22, 23 | syl5com 31 |
. . . . . . . 8
|
| 25 | 18, 24 | sylan9r 690 |
. . . . . . 7
|
| 26 | 25 | rexlimdva 3031 |
. . . . . 6
|
| 27 | 15, 26 | impbid2 216 |
. . . . 5
|
| 28 | 9, 27 | anbi12d 747 |
. . . 4
|
| 29 | eleq2 2690 |
. . . . . 6
| |
| 30 | 29 | elrab 3363 |
. . . . 5
|
| 31 | 30 | a1i 11 |
. . . 4
|
| 32 | elfg 21675 |
. . . . 5
| |
| 33 | 7, 32 | syl 17 |
. . . 4
|
| 34 | 28, 31, 33 | 3bitr4d 300 |
. . 3
|
| 35 | 34 | eqrdv 2620 |
. 2
|
| 36 | 7, 35 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-fbas 19743 df-fg 19744 df-fil 21650 |
| This theorem is referenced by: fixufil 21726 uffixfr 21727 |
| Copyright terms: Public domain | W3C validator |