MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2sn Structured version   Visualization version   Unicode version

Theorem mpt2sn 7268
Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
mpt2sn.f  |-  F  =  ( x  e.  { A } ,  y  e. 
{ B }  |->  C )
mpt2sn.a  |-  ( x  =  A  ->  C  =  D )
mpt2sn.b  |-  ( y  =  B  ->  D  =  E )
Assertion
Ref Expression
mpt2sn  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  F  =  { <. <. A ,  B >. ,  E >. } )
Distinct variable groups:    x, A, y    x, B, y    x, E, y    x, U, y   
x, V, y    x, W, y
Allowed substitution hints:    C( x, y)    D( x, y)    F( x, y)

Proof of Theorem mpt2sn
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 xpsng 6406 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B } )  =  { <. A ,  B >. } )
213adant3 1081 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  ( { A }  X.  { B } )  =  { <. A ,  B >. } )
32mpteq1d 4738 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  ( p  e.  ( { A }  X.  { B } )  |->  [_ ( 1st `  p )  /  x ]_ [_ ( 2nd `  p )  / 
y ]_ C )  =  ( p  e.  { <. A ,  B >. } 
|->  [_ ( 1st `  p
)  /  x ]_ [_ ( 2nd `  p
)  /  y ]_ C ) )
4 mpt2sn.f . . . 4  |-  F  =  ( x  e.  { A } ,  y  e. 
{ B }  |->  C )
5 mpt2mpts 7234 . . . 4  |-  ( x  e.  { A } ,  y  e.  { B }  |->  C )  =  ( p  e.  ( { A }  X.  { B } )  |->  [_ ( 1st `  p )  /  x ]_ [_ ( 2nd `  p )  / 
y ]_ C )
64, 5eqtri 2644 . . 3  |-  F  =  ( p  e.  ( { A }  X.  { B } )  |->  [_ ( 1st `  p )  /  x ]_ [_ ( 2nd `  p )  / 
y ]_ C )
76a1i 11 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  F  =  ( p  e.  ( { A }  X.  { B }
)  |->  [_ ( 1st `  p
)  /  x ]_ [_ ( 2nd `  p
)  /  y ]_ C ) )
8 op2ndg 7181 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
9 fveq2 6191 . . . . . . . . 9  |-  ( p  =  <. A ,  B >.  ->  ( 2nd `  p
)  =  ( 2nd `  <. A ,  B >. ) )
109eqcomd 2628 . . . . . . . 8  |-  ( p  =  <. A ,  B >.  ->  ( 2nd `  <. A ,  B >. )  =  ( 2nd `  p
) )
1110eqeq1d 2624 . . . . . . 7  |-  ( p  =  <. A ,  B >.  ->  ( ( 2nd `  <. A ,  B >. )  =  B  <->  ( 2nd `  p )  =  B ) )
128, 11syl5ibcom 235 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( p  =  <. A ,  B >.  ->  ( 2nd `  p )  =  B ) )
13123adant3 1081 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  ( p  =  <. A ,  B >.  ->  ( 2nd `  p )  =  B ) )
1413imp 445 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U
)  /\  p  =  <. A ,  B >. )  ->  ( 2nd `  p
)  =  B )
15 op1stg 7180 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )
16 fveq2 6191 . . . . . . . . 9  |-  ( p  =  <. A ,  B >.  ->  ( 1st `  p
)  =  ( 1st `  <. A ,  B >. ) )
1716eqcomd 2628 . . . . . . . 8  |-  ( p  =  <. A ,  B >.  ->  ( 1st `  <. A ,  B >. )  =  ( 1st `  p
) )
1817eqeq1d 2624 . . . . . . 7  |-  ( p  =  <. A ,  B >.  ->  ( ( 1st `  <. A ,  B >. )  =  A  <->  ( 1st `  p )  =  A ) )
1915, 18syl5ibcom 235 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( p  =  <. A ,  B >.  ->  ( 1st `  p )  =  A ) )
20193adant3 1081 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  ( p  =  <. A ,  B >.  ->  ( 1st `  p )  =  A ) )
2120imp 445 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U
)  /\  p  =  <. A ,  B >. )  ->  ( 1st `  p
)  =  A )
22 simp1 1061 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  A  e.  V )
23 simpl2 1065 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U
)  /\  x  =  A )  ->  B  e.  W )
24 mpt2sn.a . . . . . . . . . 10  |-  ( x  =  A  ->  C  =  D )
2524adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U
)  /\  x  =  A )  ->  C  =  D )
26 mpt2sn.b . . . . . . . . 9  |-  ( y  =  B  ->  D  =  E )
2725, 26sylan9eq 2676 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  /\  x  =  A )  /\  y  =  B )  ->  C  =  E )
2823, 27csbied 3560 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U
)  /\  x  =  A )  ->  [_ B  /  y ]_ C  =  E )
2922, 28csbied 3560 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  E
)
3029adantr 481 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U
)  /\  p  =  <. A ,  B >. )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  E
)
31 csbeq1 3536 . . . . . . . 8  |-  ( ( 1st `  p )  =  A  ->  [_ ( 1st `  p )  /  x ]_ [_ ( 2nd `  p )  /  y ]_ C  =  [_ A  /  x ]_ [_ ( 2nd `  p )  / 
y ]_ C )
3231eqeq1d 2624 . . . . . . 7  |-  ( ( 1st `  p )  =  A  ->  ( [_ ( 1st `  p
)  /  x ]_ [_ ( 2nd `  p
)  /  y ]_ C  =  E  <->  [_ A  /  x ]_ [_ ( 2nd `  p )  /  y ]_ C  =  E
) )
3332adantl 482 . . . . . 6  |-  ( ( ( 2nd `  p
)  =  B  /\  ( 1st `  p )  =  A )  -> 
( [_ ( 1st `  p
)  /  x ]_ [_ ( 2nd `  p
)  /  y ]_ C  =  E  <->  [_ A  /  x ]_ [_ ( 2nd `  p )  /  y ]_ C  =  E
) )
34 csbeq1 3536 . . . . . . . . 9  |-  ( ( 2nd `  p )  =  B  ->  [_ ( 2nd `  p )  / 
y ]_ C  =  [_ B  /  y ]_ C
)
3534adantr 481 . . . . . . . 8  |-  ( ( ( 2nd `  p
)  =  B  /\  ( 1st `  p )  =  A )  ->  [_ ( 2nd `  p
)  /  y ]_ C  =  [_ B  / 
y ]_ C )
3635csbeq2dv 3992 . . . . . . 7  |-  ( ( ( 2nd `  p
)  =  B  /\  ( 1st `  p )  =  A )  ->  [_ A  /  x ]_ [_ ( 2nd `  p
)  /  y ]_ C  =  [_ A  /  x ]_ [_ B  / 
y ]_ C )
3736eqeq1d 2624 . . . . . 6  |-  ( ( ( 2nd `  p
)  =  B  /\  ( 1st `  p )  =  A )  -> 
( [_ A  /  x ]_ [_ ( 2nd `  p
)  /  y ]_ C  =  E  <->  [_ A  /  x ]_ [_ B  / 
y ]_ C  =  E ) )
3833, 37bitrd 268 . . . . 5  |-  ( ( ( 2nd `  p
)  =  B  /\  ( 1st `  p )  =  A )  -> 
( [_ ( 1st `  p
)  /  x ]_ [_ ( 2nd `  p
)  /  y ]_ C  =  E  <->  [_ A  /  x ]_ [_ B  / 
y ]_ C  =  E ) )
3930, 38syl5ibrcom 237 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U
)  /\  p  =  <. A ,  B >. )  ->  ( ( ( 2nd `  p )  =  B  /\  ( 1st `  p )  =  A )  ->  [_ ( 1st `  p )  /  x ]_ [_ ( 2nd `  p )  /  y ]_ C  =  E
) )
4014, 21, 39mp2and 715 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U
)  /\  p  =  <. A ,  B >. )  ->  [_ ( 1st `  p
)  /  x ]_ [_ ( 2nd `  p
)  /  y ]_ C  =  E )
41 opex 4932 . . . 4  |-  <. A ,  B >.  e.  _V
4241a1i 11 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  -> 
<. A ,  B >.  e. 
_V )
43 simp3 1063 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  E  e.  U )
4440, 42, 43fmptsnd 6435 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  { <. <. A ,  B >. ,  E >. }  =  ( p  e.  { <. A ,  B >. }  |->  [_ ( 1st `  p )  /  x ]_ [_ ( 2nd `  p )  / 
y ]_ C ) )
453, 7, 443eqtr4d 2666 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  E  e.  U )  ->  F  =  { <. <. A ,  B >. ,  E >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   {csn 4177   <.cop 4183    |-> cmpt 4729    X. cxp 5112   ` cfv 5888    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  mat1dim0  20279  mat1dimid  20280  mat1dimmul  20282  d1mat2pmat  20544
  Copyright terms: Public domain W3C validator