MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsuppres Structured version   Visualization version   Unicode version

Theorem fnsuppres 7322
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.)
Assertion
Ref Expression
fnsuppres  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( F supp 
Z )  C_  A  <->  ( F  |`  B )  =  ( B  X.  { Z } ) ) )

Proof of Theorem fnsuppres
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fndm 5990 . . . . . 6  |-  ( F  Fn  ( A  u.  B )  ->  dom  F  =  ( A  u.  B ) )
2 rabeq 3192 . . . . . 6  |-  ( dom 
F  =  ( A  u.  B )  ->  { a  e.  dom  F  |  ( F `  a )  =/=  Z }  =  { a  e.  ( A  u.  B
)  |  ( F `
 a )  =/= 
Z } )
31, 2syl 17 . . . . 5  |-  ( F  Fn  ( A  u.  B )  ->  { a  e.  dom  F  | 
( F `  a
)  =/=  Z }  =  { a  e.  ( A  u.  B )  |  ( F `  a )  =/=  Z } )
433ad2ant1 1082 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  { a  e. 
dom  F  |  ( F `  a )  =/=  Z }  =  {
a  e.  ( A  u.  B )  |  ( F `  a
)  =/=  Z }
)
54sseq1d 3632 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( { a  e.  dom  F  | 
( F `  a
)  =/=  Z }  C_  A  <->  { a  e.  ( A  u.  B )  |  ( F `  a )  =/=  Z }  C_  A ) )
6 unss 3787 . . . . 5  |-  ( ( { a  e.  A  |  ( F `  a )  =/=  Z }  C_  A  /\  {
a  e.  B  | 
( F `  a
)  =/=  Z }  C_  A )  <->  ( {
a  e.  A  | 
( F `  a
)  =/=  Z }  u.  { a  e.  B  |  ( F `  a )  =/=  Z } )  C_  A
)
7 ssrab2 3687 . . . . . 6  |-  { a  e.  A  |  ( F `  a )  =/=  Z }  C_  A
87biantrur 527 . . . . 5  |-  ( { a  e.  B  | 
( F `  a
)  =/=  Z }  C_  A  <->  ( { a  e.  A  |  ( F `  a )  =/=  Z }  C_  A  /\  { a  e.  B  |  ( F `
 a )  =/= 
Z }  C_  A
) )
9 rabun2 3906 . . . . . 6  |-  { a  e.  ( A  u.  B )  |  ( F `  a )  =/=  Z }  =  ( { a  e.  A  |  ( F `  a )  =/=  Z }  u.  { a  e.  B  |  ( F `  a )  =/=  Z } )
109sseq1i 3629 . . . . 5  |-  ( { a  e.  ( A  u.  B )  |  ( F `  a
)  =/=  Z }  C_  A  <->  ( { a  e.  A  |  ( F `  a )  =/=  Z }  u.  { a  e.  B  | 
( F `  a
)  =/=  Z }
)  C_  A )
116, 8, 103bitr4ri 293 . . . 4  |-  ( { a  e.  ( A  u.  B )  |  ( F `  a
)  =/=  Z }  C_  A  <->  { a  e.  B  |  ( F `  a )  =/=  Z }  C_  A )
12 rabss 3679 . . . . 5  |-  ( { a  e.  B  | 
( F `  a
)  =/=  Z }  C_  A  <->  A. a  e.  B  ( ( F `  a )  =/=  Z  ->  a  e.  A ) )
13 fvres 6207 . . . . . . . . 9  |-  ( a  e.  B  ->  (
( F  |`  B ) `
 a )  =  ( F `  a
) )
1413adantl 482 . . . . . . . 8  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  B
)  ->  ( ( F  |`  B ) `  a )  =  ( F `  a ) )
15 simp2r 1088 . . . . . . . . 9  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  Z  e.  V
)
16 fvconst2g 6467 . . . . . . . . 9  |-  ( ( Z  e.  V  /\  a  e.  B )  ->  ( ( B  X.  { Z } ) `  a )  =  Z )
1715, 16sylan 488 . . . . . . . 8  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  B
)  ->  ( ( B  X.  { Z }
) `  a )  =  Z )
1814, 17eqeq12d 2637 . . . . . . 7  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  B
)  ->  ( (
( F  |`  B ) `
 a )  =  ( ( B  X.  { Z } ) `  a )  <->  ( F `  a )  =  Z ) )
19 nne 2798 . . . . . . . 8  |-  ( -.  ( F `  a
)  =/=  Z  <->  ( F `  a )  =  Z )
2019a1i 11 . . . . . . 7  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  B
)  ->  ( -.  ( F `  a )  =/=  Z  <->  ( F `  a )  =  Z ) )
21 id 22 . . . . . . . . 9  |-  ( a  e.  B  ->  a  e.  B )
22 simp3 1063 . . . . . . . . 9  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
23 minel 4033 . . . . . . . . 9  |-  ( ( a  e.  B  /\  ( A  i^i  B )  =  (/) )  ->  -.  a  e.  A )
2421, 22, 23syl2anr 495 . . . . . . . 8  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  B
)  ->  -.  a  e.  A )
25 mtt 354 . . . . . . . 8  |-  ( -.  a  e.  A  -> 
( -.  ( F `
 a )  =/= 
Z  <->  ( ( F `
 a )  =/= 
Z  ->  a  e.  A ) ) )
2624, 25syl 17 . . . . . . 7  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  B
)  ->  ( -.  ( F `  a )  =/=  Z  <->  ( ( F `  a )  =/=  Z  ->  a  e.  A ) ) )
2718, 20, 263bitr2rd 297 . . . . . 6  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  B
)  ->  ( (
( F `  a
)  =/=  Z  -> 
a  e.  A )  <-> 
( ( F  |`  B ) `  a
)  =  ( ( B  X.  { Z } ) `  a
) ) )
2827ralbidva 2985 . . . . 5  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( A. a  e.  B  ( ( F `  a )  =/=  Z  ->  a  e.  A )  <->  A. a  e.  B  ( ( F  |`  B ) `  a )  =  ( ( B  X.  { Z } ) `  a
) ) )
2912, 28syl5bb 272 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( { a  e.  B  |  ( F `  a )  =/=  Z }  C_  A 
<-> 
A. a  e.  B  ( ( F  |`  B ) `  a
)  =  ( ( B  X.  { Z } ) `  a
) ) )
3011, 29syl5bb 272 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( { a  e.  ( A  u.  B )  |  ( F `  a )  =/=  Z }  C_  A 
<-> 
A. a  e.  B  ( ( F  |`  B ) `  a
)  =  ( ( B  X.  { Z } ) `  a
) ) )
315, 30bitrd 268 . 2  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( { a  e.  dom  F  | 
( F `  a
)  =/=  Z }  C_  A  <->  A. a  e.  B  ( ( F  |`  B ) `  a
)  =  ( ( B  X.  { Z } ) `  a
) ) )
32 fnfun 5988 . . . . . . 7  |-  ( F  Fn  ( A  u.  B )  ->  Fun  F )
33323anim1i 1248 . . . . . 6  |-  ( ( F  Fn  ( A  u.  B )  /\  F  e.  W  /\  Z  e.  V )  ->  ( Fun  F  /\  F  e.  W  /\  Z  e.  V )
)
34333expb 1266 . . . . 5  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
) )  ->  ( Fun  F  /\  F  e.  W  /\  Z  e.  V ) )
35 suppval1 7301 . . . . 5  |-  ( ( Fun  F  /\  F  e.  W  /\  Z  e.  V )  ->  ( F supp  Z )  =  {
a  e.  dom  F  |  ( F `  a )  =/=  Z } )
3634, 35syl 17 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
) )  ->  ( F supp  Z )  =  {
a  e.  dom  F  |  ( F `  a )  =/=  Z } )
37363adant3 1081 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F supp  Z
)  =  { a  e.  dom  F  | 
( F `  a
)  =/=  Z }
)
3837sseq1d 3632 . 2  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( F supp 
Z )  C_  A  <->  { a  e.  dom  F  |  ( F `  a )  =/=  Z }  C_  A ) )
39 simp1 1061 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  F  Fn  ( A  u.  B )
)
40 ssun2 3777 . . . . 5  |-  B  C_  ( A  u.  B
)
4140a1i 11 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  B  C_  ( A  u.  B )
)
42 fnssres 6004 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  B  C_  ( A  u.  B ) )  -> 
( F  |`  B )  Fn  B )
4339, 41, 42syl2anc 693 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  |`  B )  Fn  B
)
44 fnconstg 6093 . . . . 5  |-  ( Z  e.  V  ->  ( B  X.  { Z }
)  Fn  B )
4544adantl 482 . . . 4  |-  ( ( F  e.  W  /\  Z  e.  V )  ->  ( B  X.  { Z } )  Fn  B
)
46453ad2ant2 1083 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( B  X.  { Z } )  Fn  B )
47 eqfnfv 6311 . . 3  |-  ( ( ( F  |`  B )  Fn  B  /\  ( B  X.  { Z }
)  Fn  B )  ->  ( ( F  |`  B )  =  ( B  X.  { Z } )  <->  A. a  e.  B  ( ( F  |`  B ) `  a )  =  ( ( B  X.  { Z } ) `  a
) ) )
4843, 46, 47syl2anc 693 . 2  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( F  |`  B )  =  ( B  X.  { Z } )  <->  A. a  e.  B  ( ( F  |`  B ) `  a )  =  ( ( B  X.  { Z } ) `  a
) ) )
4931, 38, 483bitr4d 300 1  |-  ( ( F  Fn  ( A  u.  B )  /\  ( F  e.  W  /\  Z  e.  V
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( F supp 
Z )  C_  A  <->  ( F  |`  B )  =  ( B  X.  { Z } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    X. cxp 5112   dom cdm 5114    |` cres 5116   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  fnsuppeq0  7323  frlmsslss2  20114  resf1o  29505
  Copyright terms: Public domain W3C validator