| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsuppres | Structured version Visualization version Unicode version | ||
| Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fnsuppres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm 5990 |
. . . . . 6
| |
| 2 | rabeq 3192 |
. . . . . 6
| |
| 3 | 1, 2 | syl 17 |
. . . . 5
|
| 4 | 3 | 3ad2ant1 1082 |
. . . 4
|
| 5 | 4 | sseq1d 3632 |
. . 3
|
| 6 | unss 3787 |
. . . . 5
| |
| 7 | ssrab2 3687 |
. . . . . 6
| |
| 8 | 7 | biantrur 527 |
. . . . 5
|
| 9 | rabun2 3906 |
. . . . . 6
| |
| 10 | 9 | sseq1i 3629 |
. . . . 5
|
| 11 | 6, 8, 10 | 3bitr4ri 293 |
. . . 4
|
| 12 | rabss 3679 |
. . . . 5
| |
| 13 | fvres 6207 |
. . . . . . . . 9
| |
| 14 | 13 | adantl 482 |
. . . . . . . 8
|
| 15 | simp2r 1088 |
. . . . . . . . 9
| |
| 16 | fvconst2g 6467 |
. . . . . . . . 9
| |
| 17 | 15, 16 | sylan 488 |
. . . . . . . 8
|
| 18 | 14, 17 | eqeq12d 2637 |
. . . . . . 7
|
| 19 | nne 2798 |
. . . . . . . 8
| |
| 20 | 19 | a1i 11 |
. . . . . . 7
|
| 21 | id 22 |
. . . . . . . . 9
| |
| 22 | simp3 1063 |
. . . . . . . . 9
| |
| 23 | minel 4033 |
. . . . . . . . 9
| |
| 24 | 21, 22, 23 | syl2anr 495 |
. . . . . . . 8
|
| 25 | mtt 354 |
. . . . . . . 8
| |
| 26 | 24, 25 | syl 17 |
. . . . . . 7
|
| 27 | 18, 20, 26 | 3bitr2rd 297 |
. . . . . 6
|
| 28 | 27 | ralbidva 2985 |
. . . . 5
|
| 29 | 12, 28 | syl5bb 272 |
. . . 4
|
| 30 | 11, 29 | syl5bb 272 |
. . 3
|
| 31 | 5, 30 | bitrd 268 |
. 2
|
| 32 | fnfun 5988 |
. . . . . . 7
| |
| 33 | 32 | 3anim1i 1248 |
. . . . . 6
|
| 34 | 33 | 3expb 1266 |
. . . . 5
|
| 35 | suppval1 7301 |
. . . . 5
| |
| 36 | 34, 35 | syl 17 |
. . . 4
|
| 37 | 36 | 3adant3 1081 |
. . 3
|
| 38 | 37 | sseq1d 3632 |
. 2
|
| 39 | simp1 1061 |
. . . 4
| |
| 40 | ssun2 3777 |
. . . . 5
| |
| 41 | 40 | a1i 11 |
. . . 4
|
| 42 | fnssres 6004 |
. . . 4
| |
| 43 | 39, 41, 42 | syl2anc 693 |
. . 3
|
| 44 | fnconstg 6093 |
. . . . 5
| |
| 45 | 44 | adantl 482 |
. . . 4
|
| 46 | 45 | 3ad2ant2 1083 |
. . 3
|
| 47 | eqfnfv 6311 |
. . 3
| |
| 48 | 43, 46, 47 | syl2anc 693 |
. 2
|
| 49 | 31, 38, 48 | 3bitr4d 300 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-supp 7296 |
| This theorem is referenced by: fnsuppeq0 7323 frlmsslss2 20114 resf1o 29505 |
| Copyright terms: Public domain | W3C validator |