MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsssuppss Structured version   Visualization version   Unicode version

Theorem funsssuppss 7321
Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.)
Assertion
Ref Expression
funsssuppss  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F supp  Z )  C_  ( G supp  Z ) )

Proof of Theorem funsssuppss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funss 5907 . . . . . . . . . 10  |-  ( F 
C_  G  ->  ( Fun  G  ->  Fun  F ) )
21impcom 446 . . . . . . . . 9  |-  ( ( Fun  G  /\  F  C_  G )  ->  Fun  F )
3 funfn 5918 . . . . . . . . . 10  |-  ( Fun 
F  <->  F  Fn  dom  F )
43biimpi 206 . . . . . . . . 9  |-  ( Fun 
F  ->  F  Fn  dom  F )
52, 4syl 17 . . . . . . . 8  |-  ( ( Fun  G  /\  F  C_  G )  ->  F  Fn  dom  F )
6 funfn 5918 . . . . . . . . . 10  |-  ( Fun 
G  <->  G  Fn  dom  G )
76biimpi 206 . . . . . . . . 9  |-  ( Fun 
G  ->  G  Fn  dom  G )
87adantr 481 . . . . . . . 8  |-  ( ( Fun  G  /\  F  C_  G )  ->  G  Fn  dom  G )
95, 8jca 554 . . . . . . 7  |-  ( ( Fun  G  /\  F  C_  G )  ->  ( F  Fn  dom  F  /\  G  Fn  dom  G ) )
1093adant3 1081 . . . . . 6  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F  Fn  dom  F  /\  G  Fn  dom  G ) )
1110adantr 481 . . . . 5  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  ( F  Fn  dom  F  /\  G  Fn  dom  G ) )
12 dmss 5323 . . . . . . . 8  |-  ( F 
C_  G  ->  dom  F 
C_  dom  G )
13123ad2ant2 1083 . . . . . . 7  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  dom  F 
C_  dom  G )
1413adantr 481 . . . . . 6  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  dom  F 
C_  dom  G )
15 dmexg 7097 . . . . . . . 8  |-  ( G  e.  V  ->  dom  G  e.  _V )
16153ad2ant3 1084 . . . . . . 7  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  dom  G  e.  _V )
1716adantr 481 . . . . . 6  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  dom  G  e.  _V )
18 simpr 477 . . . . . 6  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  Z  e.  _V )
1914, 17, 183jca 1242 . . . . 5  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  ( dom  F  C_  dom  G  /\  dom  G  e.  _V  /\  Z  e.  _V )
)
2011, 19jca 554 . . . 4  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  (
( F  Fn  dom  F  /\  G  Fn  dom  G )  /\  ( dom 
F  C_  dom  G  /\  dom  G  e.  _V  /\  Z  e.  _V )
) )
21 funssfv 6209 . . . . . . . . 9  |-  ( ( Fun  G  /\  F  C_  G  /\  x  e. 
dom  F )  -> 
( G `  x
)  =  ( F `
 x ) )
22213expa 1265 . . . . . . . 8  |-  ( ( ( Fun  G  /\  F  C_  G )  /\  x  e.  dom  F )  ->  ( G `  x )  =  ( F `  x ) )
23 eqeq1 2626 . . . . . . . . 9  |-  ( ( G `  x )  =  ( F `  x )  ->  (
( G `  x
)  =  Z  <->  ( F `  x )  =  Z ) )
2423biimpd 219 . . . . . . . 8  |-  ( ( G `  x )  =  ( F `  x )  ->  (
( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )
2522, 24syl 17 . . . . . . 7  |-  ( ( ( Fun  G  /\  F  C_  G )  /\  x  e.  dom  F )  ->  ( ( G `
 x )  =  Z  ->  ( F `  x )  =  Z ) )
2625ralrimiva 2966 . . . . . 6  |-  ( ( Fun  G  /\  F  C_  G )  ->  A. x  e.  dom  F ( ( G `  x )  =  Z  ->  ( F `  x )  =  Z ) )
27263adant3 1081 . . . . 5  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  A. x  e.  dom  F ( ( G `  x )  =  Z  ->  ( F `  x )  =  Z ) )
2827adantr 481 . . . 4  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  A. x  e.  dom  F ( ( G `  x )  =  Z  ->  ( F `  x )  =  Z ) )
29 suppfnss 7320 . . . 4  |-  ( ( ( F  Fn  dom  F  /\  G  Fn  dom  G )  /\  ( dom 
F  C_  dom  G  /\  dom  G  e.  _V  /\  Z  e.  _V )
)  ->  ( A. x  e.  dom  F ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z )  ->  ( F supp  Z
)  C_  ( G supp  Z ) ) )
3020, 28, 29sylc 65 . . 3  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  ( F supp  Z )  C_  ( G supp  Z ) )
3130expcom 451 . 2  |-  ( Z  e.  _V  ->  (
( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F supp  Z )  C_  ( G supp  Z ) ) )
32 ssid 3624 . . . 4  |-  (/)  C_  (/)
33 simpr 477 . . . . . . 7  |-  ( ( F  e.  _V  /\  Z  e.  _V )  ->  Z  e.  _V )
3433con3i 150 . . . . . 6  |-  ( -.  Z  e.  _V  ->  -.  ( F  e.  _V  /\  Z  e.  _V )
)
35 supp0prc 7298 . . . . . 6  |-  ( -.  ( F  e.  _V  /\  Z  e.  _V )  ->  ( F supp  Z )  =  (/) )
3634, 35syl 17 . . . . 5  |-  ( -.  Z  e.  _V  ->  ( F supp  Z )  =  (/) )
37 simpr 477 . . . . . . 7  |-  ( ( G  e.  _V  /\  Z  e.  _V )  ->  Z  e.  _V )
3837con3i 150 . . . . . 6  |-  ( -.  Z  e.  _V  ->  -.  ( G  e.  _V  /\  Z  e.  _V )
)
39 supp0prc 7298 . . . . . 6  |-  ( -.  ( G  e.  _V  /\  Z  e.  _V )  ->  ( G supp  Z )  =  (/) )
4038, 39syl 17 . . . . 5  |-  ( -.  Z  e.  _V  ->  ( G supp  Z )  =  (/) )
4136, 40sseq12d 3634 . . . 4  |-  ( -.  Z  e.  _V  ->  ( ( F supp  Z ) 
C_  ( G supp  Z
)  <->  (/)  C_  (/) ) )
4232, 41mpbiri 248 . . 3  |-  ( -.  Z  e.  _V  ->  ( F supp  Z )  C_  ( G supp  Z )
)
4342a1d 25 . 2  |-  ( -.  Z  e.  _V  ->  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F supp  Z )  C_  ( G supp  Z ) ) )
4431, 43pm2.61i 176 1  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F supp  Z )  C_  ( G supp  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  tdeglem4  23820
  Copyright terms: Public domain W3C validator