| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resf1o | Structured version Visualization version Unicode version | ||
| Description: Restriction of functions to a superset of their support creates a bijection. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
| Ref | Expression |
|---|---|
| resf1o.1 |
|
| resf1o.2 |
|
| Ref | Expression |
|---|---|
| resf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resf1o.2 |
. 2
| |
| 2 | resexg 5442 |
. . 3
| |
| 3 | 2 | adantl 482 |
. 2
|
| 4 | simpr 477 |
. . . 4
| |
| 5 | difexg 4808 |
. . . . . . 7
| |
| 6 | 5 | 3ad2ant1 1082 |
. . . . . 6
|
| 7 | snex 4908 |
. . . . . 6
| |
| 8 | xpexg 6960 |
. . . . . 6
| |
| 9 | 6, 7, 8 | sylancl 694 |
. . . . 5
|
| 10 | 9 | adantr 481 |
. . . 4
|
| 11 | unexg 6959 |
. . . 4
| |
| 12 | 4, 10, 11 | syl2anc 693 |
. . 3
|
| 13 | 12 | adantlr 751 |
. 2
|
| 14 | resf1o.1 |
. . . . 5
| |
| 15 | 14 | rabeq2i 3197 |
. . . 4
|
| 16 | 15 | anbi1i 731 |
. . 3
|
| 17 | simprr 796 |
. . . . . 6
| |
| 18 | simprll 802 |
. . . . . . . . 9
| |
| 19 | elmapi 7879 |
. . . . . . . . 9
| |
| 20 | 18, 19 | syl 17 |
. . . . . . . 8
|
| 21 | simp3 1063 |
. . . . . . . . 9
| |
| 22 | 21 | ad2antrr 762 |
. . . . . . . 8
|
| 23 | 20, 22 | fssresd 6071 |
. . . . . . 7
|
| 24 | simp2 1062 |
. . . . . . . . 9
| |
| 25 | simp1 1061 |
. . . . . . . . . 10
| |
| 26 | 25, 21 | ssexd 4805 |
. . . . . . . . 9
|
| 27 | elmapg 7870 |
. . . . . . . . 9
| |
| 28 | 24, 26, 27 | syl2anc 693 |
. . . . . . . 8
|
| 29 | 28 | ad2antrr 762 |
. . . . . . 7
|
| 30 | 23, 29 | mpbird 247 |
. . . . . 6
|
| 31 | 17, 30 | eqeltrd 2701 |
. . . . 5
|
| 32 | undif 4049 |
. . . . . . . . . . 11
| |
| 33 | 32 | biimpi 206 |
. . . . . . . . . 10
|
| 34 | 33 | reseq2d 5396 |
. . . . . . . . 9
|
| 35 | 22, 34 | syl 17 |
. . . . . . . 8
|
| 36 | ffn 6045 |
. . . . . . . . 9
| |
| 37 | fnresdm 6000 |
. . . . . . . . 9
| |
| 38 | 20, 36, 37 | 3syl 18 |
. . . . . . . 8
|
| 39 | 35, 38 | eqtr2d 2657 |
. . . . . . 7
|
| 40 | resundi 5410 |
. . . . . . 7
| |
| 41 | 39, 40 | syl6eq 2672 |
. . . . . 6
|
| 42 | 17 | eqcomd 2628 |
. . . . . . 7
|
| 43 | simprlr 803 |
. . . . . . . . 9
| |
| 44 | 25 | ad2antrr 762 |
. . . . . . . . . 10
|
| 45 | simplr 792 |
. . . . . . . . . 10
| |
| 46 | eqid 2622 |
. . . . . . . . . . 11
| |
| 47 | 46 | ffs2 29503 |
. . . . . . . . . 10
|
| 48 | 44, 45, 20, 47 | syl3anc 1326 |
. . . . . . . . 9
|
| 49 | sseqin2 3817 |
. . . . . . . . . . 11
| |
| 50 | 49 | biimpi 206 |
. . . . . . . . . 10
|
| 51 | 22, 50 | syl 17 |
. . . . . . . . 9
|
| 52 | 43, 48, 51 | 3sstr4d 3648 |
. . . . . . . 8
|
| 53 | simpl 473 |
. . . . . . . . . . . 12
| |
| 54 | 53, 19, 36 | 3syl 18 |
. . . . . . . . . . 11
|
| 55 | inundif 4046 |
. . . . . . . . . . . 12
| |
| 56 | 55 | fneq2i 5986 |
. . . . . . . . . . 11
|
| 57 | 54, 56 | sylibr 224 |
. . . . . . . . . 10
|
| 58 | vex 3203 |
. . . . . . . . . . 11
| |
| 59 | 58 | a1i 11 |
. . . . . . . . . 10
|
| 60 | simpr 477 |
. . . . . . . . . 10
| |
| 61 | inindif 29353 |
. . . . . . . . . . 11
| |
| 62 | 61 | a1i 11 |
. . . . . . . . . 10
|
| 63 | fnsuppres 7322 |
. . . . . . . . . 10
| |
| 64 | 57, 59, 60, 62, 63 | syl121anc 1331 |
. . . . . . . . 9
|
| 65 | 18, 45, 64 | syl2anc 693 |
. . . . . . . 8
|
| 66 | 52, 65 | mpbid 222 |
. . . . . . 7
|
| 67 | 42, 66 | uneq12d 3768 |
. . . . . 6
|
| 68 | 41, 67 | eqtrd 2656 |
. . . . 5
|
| 69 | 31, 68 | jca 554 |
. . . 4
|
| 70 | 24 | ad2antrr 762 |
. . . . . 6
|
| 71 | 25 | ad2antrr 762 |
. . . . . 6
|
| 72 | elmapi 7879 |
. . . . . . . . 9
| |
| 73 | 72 | ad2antrl 764 |
. . . . . . . 8
|
| 74 | simplr 792 |
. . . . . . . . 9
| |
| 75 | fconst6g 6094 |
. . . . . . . . 9
| |
| 76 | 74, 75 | syl 17 |
. . . . . . . 8
|
| 77 | disjdif 4040 |
. . . . . . . . 9
| |
| 78 | 77 | a1i 11 |
. . . . . . . 8
|
| 79 | fun2 6067 |
. . . . . . . 8
| |
| 80 | 73, 76, 78, 79 | syl21anc 1325 |
. . . . . . 7
|
| 81 | simprr 796 |
. . . . . . . . 9
| |
| 82 | 81 | eqcomd 2628 |
. . . . . . . 8
|
| 83 | 21 | ad2antrr 762 |
. . . . . . . . 9
|
| 84 | 83, 33 | syl 17 |
. . . . . . . 8
|
| 85 | 82, 84 | feq12d 6033 |
. . . . . . 7
|
| 86 | 80, 85 | mpbid 222 |
. . . . . 6
|
| 87 | elmapg 7870 |
. . . . . . 7
| |
| 88 | 87 | biimpar 502 |
. . . . . 6
|
| 89 | 70, 71, 86, 88 | syl21anc 1325 |
. . . . 5
|
| 90 | 71, 74, 86, 47 | syl3anc 1326 |
. . . . . 6
|
| 91 | 81 | adantr 481 |
. . . . . . . . 9
|
| 92 | 91 | fveq1d 6193 |
. . . . . . . 8
|
| 93 | 73 | adantr 481 |
. . . . . . . . . 10
|
| 94 | ffn 6045 |
. . . . . . . . . 10
| |
| 95 | 93, 94 | syl 17 |
. . . . . . . . 9
|
| 96 | fconstg 6092 |
. . . . . . . . . . 11
| |
| 97 | 96 | ad3antlr 767 |
. . . . . . . . . 10
|
| 98 | ffn 6045 |
. . . . . . . . . 10
| |
| 99 | 97, 98 | syl 17 |
. . . . . . . . 9
|
| 100 | 77 | a1i 11 |
. . . . . . . . 9
|
| 101 | simpr 477 |
. . . . . . . . 9
| |
| 102 | fvun2 6270 |
. . . . . . . . 9
| |
| 103 | 95, 99, 100, 101, 102 | syl112anc 1330 |
. . . . . . . 8
|
| 104 | fvconst 6431 |
. . . . . . . . 9
| |
| 105 | 97, 101, 104 | syl2anc 693 |
. . . . . . . 8
|
| 106 | 92, 103, 105 | 3eqtrd 2660 |
. . . . . . 7
|
| 107 | 86, 106 | suppss 7325 |
. . . . . 6
|
| 108 | 90, 107 | eqsstr3d 3640 |
. . . . 5
|
| 109 | 81 | reseq1d 5395 |
. . . . . 6
|
| 110 | res0 5400 |
. . . . . . . . . 10
| |
| 111 | res0 5400 |
. . . . . . . . . 10
| |
| 112 | 110, 111 | eqtr4i 2647 |
. . . . . . . . 9
|
| 113 | 77 | reseq2i 5393 |
. . . . . . . . 9
|
| 114 | 77 | reseq2i 5393 |
. . . . . . . . 9
|
| 115 | 112, 113, 114 | 3eqtr4ri 2655 |
. . . . . . . 8
|
| 116 | 115 | a1i 11 |
. . . . . . 7
|
| 117 | fresaunres1 6077 |
. . . . . . 7
| |
| 118 | 73, 76, 116, 117 | syl3anc 1326 |
. . . . . 6
|
| 119 | 109, 118 | eqtr2d 2657 |
. . . . 5
|
| 120 | 89, 108, 119 | jca31 557 |
. . . 4
|
| 121 | 69, 120 | impbida 877 |
. . 3
|
| 122 | 16, 121 | syl5bb 272 |
. 2
|
| 123 | 1, 3, 13, 122 | f1od 6885 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-supp 7296 df-map 7859 |
| This theorem is referenced by: eulerpartgbij 30434 |
| Copyright terms: Public domain | W3C validator |