MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppval1 Structured version   Visualization version   Unicode version

Theorem suppval1 7301
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.)
Assertion
Ref Expression
suppval1  |-  ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  ->  ( X supp  Z )  =  {
i  e.  dom  X  |  ( X `  i )  =/=  Z } )
Distinct variable groups:    i, V    i, W    i, X    i, Z

Proof of Theorem suppval1
StepHypRef Expression
1 suppval 7297 . . 3  |-  ( ( X  e.  V  /\  Z  e.  W )  ->  ( X supp  Z )  =  { i  e. 
dom  X  |  ( X " { i } )  =/=  { Z } } )
213adant1 1079 . 2  |-  ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  ->  ( X supp  Z )  =  {
i  e.  dom  X  |  ( X " { i } )  =/=  { Z } } )
3 funfn 5918 . . . . . . . . 9  |-  ( Fun 
X  <->  X  Fn  dom  X )
43biimpi 206 . . . . . . . 8  |-  ( Fun 
X  ->  X  Fn  dom  X )
543ad2ant1 1082 . . . . . . 7  |-  ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  ->  X  Fn  dom  X )
6 fnsnfv 6258 . . . . . . 7  |-  ( ( X  Fn  dom  X  /\  i  e.  dom  X )  ->  { ( X `  i ) }  =  ( X " { i } ) )
75, 6sylan 488 . . . . . 6  |-  ( ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  /\  i  e.  dom  X )  ->  { ( X `  i ) }  =  ( X " { i } ) )
87eqcomd 2628 . . . . 5  |-  ( ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  /\  i  e.  dom  X )  ->  ( X " { i } )  =  { ( X `
 i ) } )
98neeq1d 2853 . . . 4  |-  ( ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  /\  i  e.  dom  X )  ->  ( ( X " { i } )  =/=  { Z } 
<->  { ( X `  i ) }  =/=  { Z } ) )
10 fvex 6201 . . . . . 6  |-  ( X `
 i )  e. 
_V
11 sneqbg 4374 . . . . . 6  |-  ( ( X `  i )  e.  _V  ->  ( { ( X `  i ) }  =  { Z }  <->  ( X `  i )  =  Z ) )
1210, 11mp1i 13 . . . . 5  |-  ( ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  /\  i  e.  dom  X )  ->  ( {
( X `  i
) }  =  { Z }  <->  ( X `  i )  =  Z ) )
1312necon3bid 2838 . . . 4  |-  ( ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  /\  i  e.  dom  X )  ->  ( {
( X `  i
) }  =/=  { Z }  <->  ( X `  i )  =/=  Z
) )
149, 13bitrd 268 . . 3  |-  ( ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  /\  i  e.  dom  X )  ->  ( ( X " { i } )  =/=  { Z } 
<->  ( X `  i
)  =/=  Z ) )
1514rabbidva 3188 . 2  |-  ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  ->  { i  e.  dom  X  | 
( X " {
i } )  =/= 
{ Z } }  =  { i  e.  dom  X  |  ( X `  i )  =/=  Z } )
162, 15eqtrd 2656 1  |-  ( ( Fun  X  /\  X  e.  V  /\  Z  e.  W )  ->  ( X supp  Z )  =  {
i  e.  dom  X  |  ( X `  i )  =/=  Z } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   {csn 4177   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  suppvalfn  7302  suppfnss  7320  fnsuppres  7322  domnmsuppn0  42150  rmsuppss  42151  mndpsuppss  42152  scmsuppss  42153  suppdm  42300
  Copyright terms: Public domain W3C validator