MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  solin Structured version   Visualization version   Unicode version

Theorem solin 5058
Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
solin  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )

Proof of Theorem solin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . 5  |-  ( x  =  B  ->  (
x R y  <->  B R
y ) )
2 eqeq1 2626 . . . . 5  |-  ( x  =  B  ->  (
x  =  y  <->  B  =  y ) )
3 breq2 4657 . . . . 5  |-  ( x  =  B  ->  (
y R x  <->  y R B ) )
41, 2, 33orbi123d 1398 . . . 4  |-  ( x  =  B  ->  (
( x R y  \/  x  =  y  \/  y R x )  <->  ( B R y  \/  B  =  y  \/  y R B ) ) )
54imbi2d 330 . . 3  |-  ( x  =  B  ->  (
( R  Or  A  ->  ( x R y  \/  x  =  y  \/  y R x ) )  <->  ( R  Or  A  ->  ( B R y  \/  B  =  y  \/  y R B ) ) ) )
6 breq2 4657 . . . . 5  |-  ( y  =  C  ->  ( B R y  <->  B R C ) )
7 eqeq2 2633 . . . . 5  |-  ( y  =  C  ->  ( B  =  y  <->  B  =  C ) )
8 breq1 4656 . . . . 5  |-  ( y  =  C  ->  (
y R B  <->  C R B ) )
96, 7, 83orbi123d 1398 . . . 4  |-  ( y  =  C  ->  (
( B R y  \/  B  =  y  \/  y R B )  <->  ( B R C  \/  B  =  C  \/  C R B ) ) )
109imbi2d 330 . . 3  |-  ( y  =  C  ->  (
( R  Or  A  ->  ( B R y  \/  B  =  y  \/  y R B ) )  <->  ( R  Or  A  ->  ( B R C  \/  B  =  C  \/  C R B ) ) ) )
11 df-so 5036 . . . . 5  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
12 rsp2 2936 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  ->  ( ( x  e.  A  /\  y  e.  A )  ->  (
x R y  \/  x  =  y  \/  y R x ) ) )
1311, 12simplbiim 659 . . . 4  |-  ( R  Or  A  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( x R y  \/  x  =  y  \/  y R x ) ) )
1413com12 32 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( R  Or  A  ->  ( x R y  \/  x  =  y  \/  y R x ) ) )
155, 10, 14vtocl2ga 3274 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( R  Or  A  ->  ( B R C  \/  B  =  C  \/  C R B ) ) )
1615impcom 446 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    Po wpo 5033    Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-so 5036
This theorem is referenced by:  sotric  5061  sotrieq  5062  somo  5069  wecmpep  5106  sorpssi  6943  soxp  7290  wfrlem10  7424  wemaplem2  8452  fpwwe2lem12  9463  fpwwe2lem13  9464  lttri4  10122  xmullem  12094  xmulasslem  12115  orngsqr  29804  noresle  31846  nosupbnd1lem6  31859  sltlin  31874  fin2so  33396  fnwe2lem3  37622
  Copyright terms: Public domain W3C validator