| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f2ndres | Structured version Visualization version Unicode version | ||
| Description: Mapping of a restriction
of the |
| Ref | Expression |
|---|---|
| f2ndres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . . . . 8
| |
| 2 | vex 3203 |
. . . . . . . 8
| |
| 3 | 1, 2 | op2nda 5620 |
. . . . . . 7
|
| 4 | 3 | eleq1i 2692 |
. . . . . 6
|
| 5 | 4 | biimpri 218 |
. . . . 5
|
| 6 | 5 | adantl 482 |
. . . 4
|
| 7 | 6 | rgen2 2975 |
. . 3
|
| 8 | sneq 4187 |
. . . . . . 7
| |
| 9 | 8 | rneqd 5353 |
. . . . . 6
|
| 10 | 9 | unieqd 4446 |
. . . . 5
|
| 11 | 10 | eleq1d 2686 |
. . . 4
|
| 12 | 11 | ralxp 5263 |
. . 3
|
| 13 | 7, 12 | mpbir 221 |
. 2
|
| 14 | df-2nd 7169 |
. . . . 5
| |
| 15 | 14 | reseq1i 5392 |
. . . 4
|
| 16 | ssv 3625 |
. . . . 5
| |
| 17 | resmpt 5449 |
. . . . 5
| |
| 18 | 16, 17 | ax-mp 5 |
. . . 4
|
| 19 | 15, 18 | eqtri 2644 |
. . 3
|
| 20 | 19 | fmpt 6381 |
. 2
|
| 21 | 13, 20 | mpbi 220 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-2nd 7169 |
| This theorem is referenced by: fo2ndres 7193 2ndcof 7197 fparlem2 7278 f2ndf 7283 eucalgcvga 15299 2ndfcl 16838 gaid 17732 tx2cn 21413 txkgen 21455 xpinpreima 29952 xpinpreima2 29953 2ndmbfm 30323 filnetlem4 32376 hausgraph 37790 |
| Copyright terms: Public domain | W3C validator |