MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foco Structured version   Visualization version   Unicode version

Theorem foco 6125
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
foco  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )

Proof of Theorem foco
StepHypRef Expression
1 dffo2 6119 . . 3  |-  ( F : B -onto-> C  <->  ( F : B --> C  /\  ran  F  =  C ) )
2 dffo2 6119 . . 3  |-  ( G : A -onto-> B  <->  ( G : A --> B  /\  ran  G  =  B ) )
3 fco 6058 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
43ad2ant2r 783 . . . 4  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ( F  o.  G ) : A --> C )
5 fdm 6051 . . . . . . . 8  |-  ( F : B --> C  ->  dom  F  =  B )
6 eqtr3 2643 . . . . . . . 8  |-  ( ( dom  F  =  B  /\  ran  G  =  B )  ->  dom  F  =  ran  G )
75, 6sylan 488 . . . . . . 7  |-  ( ( F : B --> C  /\  ran  G  =  B )  ->  dom  F  =  ran  G )
8 rncoeq 5389 . . . . . . . . 9  |-  ( dom 
F  =  ran  G  ->  ran  ( F  o.  G )  =  ran  F )
98eqeq1d 2624 . . . . . . . 8  |-  ( dom 
F  =  ran  G  ->  ( ran  ( F  o.  G )  =  C  <->  ran  F  =  C ) )
109biimpar 502 . . . . . . 7  |-  ( ( dom  F  =  ran  G  /\  ran  F  =  C )  ->  ran  ( F  o.  G
)  =  C )
117, 10sylan 488 . . . . . 6  |-  ( ( ( F : B --> C  /\  ran  G  =  B )  /\  ran  F  =  C )  ->  ran  ( F  o.  G
)  =  C )
1211an32s 846 . . . . 5  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ran  G  =  B )  ->  ran  ( F  o.  G
)  =  C )
1312adantrl 752 . . . 4  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ran  ( F  o.  G )  =  C )
144, 13jca 554 . . 3  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
151, 2, 14syl2anb 496 . 2  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
16 dffo2 6119 . 2  |-  ( ( F  o.  G ) : A -onto-> C  <->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
1715, 16sylibr 224 1  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   dom cdm 5114   ran crn 5115    o. ccom 5118   -->wf 5884   -onto->wfo 5886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894
This theorem is referenced by:  f1oco  6159  wdomtr  8480  fin1a2lem7  9228  cofull  16594  uniiccdif  23346
  Copyright terms: Public domain W3C validator