MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem7 Structured version   Visualization version   Unicode version

Theorem fin1a2lem7 9228
Description: Lemma for fin1a2 9237. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
fin1a2lem.aa  |-  S  =  ( x  e.  On  |->  suc  x )
Assertion
Ref Expression
fin1a2lem7  |-  ( ( A  e.  V  /\  A. y  e.  ~P  A
( y  e. FinIII  \/  ( A  \  y )  e. FinIII ) )  ->  A  e. FinIII )
Distinct variable groups:    y, A    y, E
Allowed substitution hints:    A( x)    S( x, y)    E( x)    V( x, y)

Proof of Theorem fin1a2lem7
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 peano1 7085 . . . . . 6  |-  (/)  e.  om
2 ne0i 3921 . . . . . 6  |-  ( (/)  e.  om  ->  om  =/=  (/) )
3 brwdomn0 8474 . . . . . 6  |-  ( om  =/=  (/)  ->  ( om  ~<_*  A  <->  E. f  f : A -onto-> om ) )
41, 2, 3mp2b 10 . . . . 5  |-  ( om  ~<_*  A 
<->  E. f  f : A -onto-> om )
5 vex 3203 . . . . . . . . . 10  |-  f  e. 
_V
6 fof 6115 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  f : A --> om )
7 dmfex 7124 . . . . . . . . . 10  |-  ( ( f  e.  _V  /\  f : A --> om )  ->  A  e.  _V )
85, 6, 7sylancr 695 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  A  e.  _V )
9 cnvimass 5485 . . . . . . . . . 10  |-  ( `' f " ran  E
)  C_  dom  f
10 fdm 6051 . . . . . . . . . . 11  |-  ( f : A --> om  ->  dom  f  =  A )
116, 10syl 17 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  dom  f  =  A )
129, 11syl5sseq 3653 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  ( `' f " ran  E )  C_  A )
138, 12sselpwd 4807 . . . . . . . 8  |-  ( f : A -onto-> om  ->  ( `' f " ran  E )  e.  ~P A
)
14 fin1a2lem.b . . . . . . . . . . . . . 14  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
1514fin1a2lem4 9225 . . . . . . . . . . . . 13  |-  E : om
-1-1-> om
16 f1cnv 6160 . . . . . . . . . . . . 13  |-  ( E : om -1-1-> om  ->  `' E : ran  E -1-1-onto-> om )
17 f1ofo 6144 . . . . . . . . . . . . 13  |-  ( `' E : ran  E -1-1-onto-> om  ->  `' E : ran  E -onto-> om )
1815, 16, 17mp2b 10 . . . . . . . . . . . 12  |-  `' E : ran  E -onto-> om
19 fofun 6116 . . . . . . . . . . . 12  |-  ( `' E : ran  E -onto-> om  ->  Fun  `' E
)
2018, 19ax-mp 5 . . . . . . . . . . 11  |-  Fun  `' E
215resex 5443 . . . . . . . . . . 11  |-  ( f  |`  ( `' f " ran  E ) )  e. 
_V
22 cofunexg 7130 . . . . . . . . . . 11  |-  ( ( Fun  `' E  /\  ( f  |`  ( `' f " ran  E ) )  e.  _V )  ->  ( `' E  o.  ( f  |`  ( `' f " ran  E ) ) )  e. 
_V )
2320, 21, 22mp2an 708 . . . . . . . . . 10  |-  ( `' E  o.  ( f  |`  ( `' f " ran  E ) ) )  e.  _V
24 fofun 6116 . . . . . . . . . . . . 13  |-  ( f : A -onto-> om  ->  Fun  f )
25 fores 6124 . . . . . . . . . . . . 13  |-  ( ( Fun  f  /\  ( `' f " ran  E )  C_  dom  f )  ->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ( f "
( `' f " ran  E ) ) )
2624, 9, 25sylancl 694 . . . . . . . . . . . 12  |-  ( f : A -onto-> om  ->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E
) -onto-> ( f "
( `' f " ran  E ) ) )
27 f1f 6101 . . . . . . . . . . . . . . 15  |-  ( E : om -1-1-> om  ->  E : om --> om )
28 frn 6053 . . . . . . . . . . . . . . 15  |-  ( E : om --> om  ->  ran 
E  C_  om )
2915, 27, 28mp2b 10 . . . . . . . . . . . . . 14  |-  ran  E  C_ 
om
30 foimacnv 6154 . . . . . . . . . . . . . 14  |-  ( ( f : A -onto-> om  /\ 
ran  E  C_  om )  ->  ( f " ( `' f " ran  E ) )  =  ran  E )
3129, 30mpan2 707 . . . . . . . . . . . . 13  |-  ( f : A -onto-> om  ->  ( f " ( `' f " ran  E
) )  =  ran  E )
32 foeq3 6113 . . . . . . . . . . . . 13  |-  ( ( f " ( `' f " ran  E
) )  =  ran  E  ->  ( ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ( f
" ( `' f
" ran  E )
)  <->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ran  E ) )
3331, 32syl 17 . . . . . . . . . . . 12  |-  ( f : A -onto-> om  ->  ( ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ( f "
( `' f " ran  E ) )  <->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ran  E
) )
3426, 33mpbid 222 . . . . . . . . . . 11  |-  ( f : A -onto-> om  ->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E
) -onto-> ran  E )
35 foco 6125 . . . . . . . . . . 11  |-  ( ( `' E : ran  E -onto-> om  /\  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ran  E )  -> 
( `' E  o.  ( f  |`  ( `' f " ran  E ) ) ) : ( `' f " ran  E ) -onto-> om )
3618, 34, 35sylancr 695 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  ( `' E  o.  (
f  |`  ( `' f
" ran  E )
) ) : ( `' f " ran  E ) -onto-> om )
37 fowdom 8476 . . . . . . . . . 10  |-  ( ( ( `' E  o.  ( f  |`  ( `' f " ran  E ) ) )  e. 
_V  /\  ( `' E  o.  ( f  |`  ( `' f " ran  E ) ) ) : ( `' f
" ran  E ) -onto-> om )  ->  om  ~<_*  ( `' f " ran  E ) )
3823, 36, 37sylancr 695 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  om  ~<_*  ( `' f " ran  E ) )
395cnvex 7113 . . . . . . . . . . . 12  |-  `' f  e.  _V
4039imaex 7104 . . . . . . . . . . 11  |-  ( `' f " ran  E
)  e.  _V
41 isfin3-2 9189 . . . . . . . . . . 11  |-  ( ( `' f " ran  E )  e.  _V  ->  ( ( `' f " ran  E )  e. FinIII  <->  -.  om  ~<_*  ( `' f " ran  E ) ) )
4240, 41ax-mp 5 . . . . . . . . . 10  |-  ( ( `' f " ran  E )  e. FinIII 
<->  -.  om  ~<_*  ( `' f " ran  E ) )
4342con2bii 347 . . . . . . . . 9  |-  ( om  ~<_*  ( `' f " ran  E )  <->  -.  ( `' f " ran  E )  e. FinIII )
4438, 43sylib 208 . . . . . . . 8  |-  ( f : A -onto-> om  ->  -.  ( `' f " ran  E )  e. FinIII )
45 fin1a2lem.aa . . . . . . . . . . . . . . 15  |-  S  =  ( x  e.  On  |->  suc  x )
4614, 45fin1a2lem6 9227 . . . . . . . . . . . . . 14  |-  ( S  |`  ran  E ) : ran  E -1-1-onto-> ( om  \  ran  E )
47 f1ocnv 6149 . . . . . . . . . . . . . 14  |-  ( ( S  |`  ran  E ) : ran  E -1-1-onto-> ( om 
\  ran  E )  ->  `' ( S  |`  ran  E ) : ( om  \  ran  E
)
-1-1-onto-> ran  E )
48 f1ofo 6144 . . . . . . . . . . . . . 14  |-  ( `' ( S  |`  ran  E
) : ( om 
\  ran  E ) -1-1-onto-> ran  E  ->  `' ( S  |`  ran  E ) : ( om  \  ran  E ) -onto-> ran  E )
4946, 47, 48mp2b 10 . . . . . . . . . . . . 13  |-  `' ( S  |`  ran  E ) : ( om  \  ran  E ) -onto-> ran  E
50 foco 6125 . . . . . . . . . . . . 13  |-  ( ( `' E : ran  E -onto-> om  /\  `' ( S  |`  ran  E ) : ( om  \  ran  E ) -onto-> ran  E )  -> 
( `' E  o.  `' ( S  |`  ran  E ) ) : ( om  \  ran  E ) -onto-> om )
5118, 49, 50mp2an 708 . . . . . . . . . . . 12  |-  ( `' E  o.  `' ( S  |`  ran  E ) ) : ( om 
\  ran  E ) -onto-> om
52 fofun 6116 . . . . . . . . . . . 12  |-  ( ( `' E  o.  `' ( S  |`  ran  E
) ) : ( om  \  ran  E
) -onto-> om  ->  Fun  ( `' E  o.  `' ( S  |`  ran  E ) ) )
5351, 52ax-mp 5 . . . . . . . . . . 11  |-  Fun  ( `' E  o.  `' ( S  |`  ran  E
) )
545resex 5443 . . . . . . . . . . 11  |-  ( f  |`  ( A  \  ( `' f " ran  E ) ) )  e. 
_V
55 cofunexg 7130 . . . . . . . . . . 11  |-  ( ( Fun  ( `' E  o.  `' ( S  |`  ran  E ) )  /\  ( f  |`  ( A  \  ( `' f
" ran  E )
) )  e.  _V )  ->  ( ( `' E  o.  `' ( S  |`  ran  E ) )  o.  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) )  e.  _V )
5653, 54, 55mp2an 708 . . . . . . . . . 10  |-  ( ( `' E  o.  `' ( S  |`  ran  E
) )  o.  (
f  |`  ( A  \ 
( `' f " ran  E ) ) ) )  e.  _V
57 difss 3737 . . . . . . . . . . . . . 14  |-  ( A 
\  ( `' f
" ran  E )
)  C_  A
5857, 11syl5sseqr 3654 . . . . . . . . . . . . 13  |-  ( f : A -onto-> om  ->  ( A  \  ( `' f " ran  E
) )  C_  dom  f )
59 fores 6124 . . . . . . . . . . . . 13  |-  ( ( Fun  f  /\  ( A  \  ( `' f
" ran  E )
)  C_  dom  f )  ->  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \  ( `' f " ran  E ) ) -onto-> ( f
" ( A  \ 
( `' f " ran  E ) ) ) )
6024, 58, 59syl2anc 693 . . . . . . . . . . . 12  |-  ( f : A -onto-> om  ->  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \ 
( `' f " ran  E ) ) -onto-> ( f " ( A 
\  ( `' f
" ran  E )
) ) )
61 funcnvcnv 5956 . . . . . . . . . . . . . . . 16  |-  ( Fun  f  ->  Fun  `' `' f )
62 imadif 5973 . . . . . . . . . . . . . . . 16  |-  ( Fun  `' `' f  ->  ( `' f " ( om 
\  ran  E )
)  =  ( ( `' f " om )  \  ( `' f
" ran  E )
) )
6324, 61, 623syl 18 . . . . . . . . . . . . . . 15  |-  ( f : A -onto-> om  ->  ( `' f " ( om  \  ran  E ) )  =  ( ( `' f " om )  \  ( `' f
" ran  E )
) )
6463imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( f : A -onto-> om  ->  ( f " ( `' f " ( om 
\  ran  E )
) )  =  ( f " ( ( `' f " om )  \  ( `' f
" ran  E )
) ) )
65 difss 3737 . . . . . . . . . . . . . . 15  |-  ( om 
\  ran  E )  C_ 
om
66 foimacnv 6154 . . . . . . . . . . . . . . 15  |-  ( ( f : A -onto-> om  /\  ( om  \  ran  E )  C_  om )  ->  ( f " ( `' f " ( om  \  ran  E ) ) )  =  ( om  \  ran  E
) )
6765, 66mpan2 707 . . . . . . . . . . . . . 14  |-  ( f : A -onto-> om  ->  ( f " ( `' f " ( om 
\  ran  E )
) )  =  ( om  \  ran  E
) )
68 fimacnv 6347 . . . . . . . . . . . . . . . . 17  |-  ( f : A --> om  ->  ( `' f " om )  =  A )
696, 68syl 17 . . . . . . . . . . . . . . . 16  |-  ( f : A -onto-> om  ->  ( `' f " om )  =  A )
7069difeq1d 3727 . . . . . . . . . . . . . . 15  |-  ( f : A -onto-> om  ->  ( ( `' f " om )  \  ( `' f " ran  E ) )  =  ( A  \  ( `' f " ran  E
) ) )
7170imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( f : A -onto-> om  ->  ( f " ( ( `' f " om )  \  ( `' f
" ran  E )
) )  =  ( f " ( A 
\  ( `' f
" ran  E )
) ) )
7264, 67, 713eqtr3rd 2665 . . . . . . . . . . . . 13  |-  ( f : A -onto-> om  ->  ( f " ( A 
\  ( `' f
" ran  E )
) )  =  ( om  \  ran  E
) )
73 foeq3 6113 . . . . . . . . . . . . 13  |-  ( ( f " ( A 
\  ( `' f
" ran  E )
) )  =  ( om  \  ran  E
)  ->  ( (
f  |`  ( A  \ 
( `' f " ran  E ) ) ) : ( A  \ 
( `' f " ran  E ) ) -onto-> ( f " ( A 
\  ( `' f
" ran  E )
) )  <->  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \  ( `' f " ran  E ) ) -onto-> ( om 
\  ran  E )
) )
7472, 73syl 17 . . . . . . . . . . . 12  |-  ( f : A -onto-> om  ->  ( ( f  |`  ( A  \  ( `' f
" ran  E )
) ) : ( A  \  ( `' f " ran  E
) ) -onto-> ( f
" ( A  \ 
( `' f " ran  E ) ) )  <-> 
( f  |`  ( A  \  ( `' f
" ran  E )
) ) : ( A  \  ( `' f " ran  E
) ) -onto-> ( om 
\  ran  E )
) )
7560, 74mpbid 222 . . . . . . . . . . 11  |-  ( f : A -onto-> om  ->  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \ 
( `' f " ran  E ) ) -onto-> ( om  \  ran  E
) )
76 foco 6125 . . . . . . . . . . 11  |-  ( ( ( `' E  o.  `' ( S  |`  ran  E ) ) : ( om  \  ran  E ) -onto-> om  /\  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \  ( `' f " ran  E ) ) -onto-> ( om 
\  ran  E )
)  ->  ( ( `' E  o.  `' ( S  |`  ran  E
) )  o.  (
f  |`  ( A  \ 
( `' f " ran  E ) ) ) ) : ( A 
\  ( `' f
" ran  E )
) -onto-> om )
7751, 75, 76sylancr 695 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  ( ( `' E  o.  `' ( S  |`  ran  E ) )  o.  ( f  |`  ( A  \  ( `' f
" ran  E )
) ) ) : ( A  \  ( `' f " ran  E ) ) -onto-> om )
78 fowdom 8476 . . . . . . . . . 10  |-  ( ( ( ( `' E  o.  `' ( S  |`  ran  E ) )  o.  ( f  |`  ( A  \  ( `' f
" ran  E )
) ) )  e. 
_V  /\  ( ( `' E  o.  `' ( S  |`  ran  E
) )  o.  (
f  |`  ( A  \ 
( `' f " ran  E ) ) ) ) : ( A 
\  ( `' f
" ran  E )
) -onto-> om )  ->  om  ~<_*  ( A  \  ( `' f " ran  E ) ) )
7956, 77, 78sylancr 695 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  om  ~<_*  ( A  \  ( `' f " ran  E ) ) )
80 difexg 4808 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( A  \  ( `' f
" ran  E )
)  e.  _V )
81 isfin3-2 9189 . . . . . . . . . . 11  |-  ( ( A  \  ( `' f " ran  E
) )  e.  _V  ->  ( ( A  \ 
( `' f " ran  E ) )  e. FinIII  <->  -.  om  ~<_*  ( A  \  ( `' f " ran  E ) ) ) )
828, 80, 813syl 18 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  ( ( A  \  ( `' f " ran  E ) )  e. FinIII  <->  -.  om  ~<_*  ( A  \  ( `' f " ran  E ) ) ) )
8382con2bid 344 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  ( om  ~<_*  ( A  \  ( `' f " ran  E ) )  <->  -.  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) )
8479, 83mpbid 222 . . . . . . . 8  |-  ( f : A -onto-> om  ->  -.  ( A  \  ( `' f " ran  E ) )  e. FinIII )
85 eleq1 2689 . . . . . . . . . . . 12  |-  ( y  =  ( `' f
" ran  E )  ->  ( y  e. FinIII  <->  ( `' f " ran  E )  e. FinIII ) )
86 difeq2 3722 . . . . . . . . . . . . 13  |-  ( y  =  ( `' f
" ran  E )  ->  ( A  \  y
)  =  ( A 
\  ( `' f
" ran  E )
) )
8786eleq1d 2686 . . . . . . . . . . . 12  |-  ( y  =  ( `' f
" ran  E )  ->  ( ( A  \ 
y )  e. FinIII  <->  ( A  \  ( `' f " ran  E ) )  e. FinIII ) )
8885, 87orbi12d 746 . . . . . . . . . . 11  |-  ( y  =  ( `' f
" ran  E )  ->  ( ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII )  <->  ( ( `' f " ran  E )  e. FinIII  \/  ( A  \  ( `' f " ran  E ) )  e. FinIII ) ) )
8988notbid 308 . . . . . . . . . 10  |-  ( y  =  ( `' f
" ran  E )  ->  ( -.  ( y  e. FinIII  \/  ( A  \ 
y )  e. FinIII )  <->  -.  (
( `' f " ran  E )  e. FinIII  \/  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) ) )
90 ioran 511 . . . . . . . . . 10  |-  ( -.  ( ( `' f
" ran  E )  e. FinIII  \/  ( A  \  ( `' f " ran  E ) )  e. FinIII )  <->  ( -.  ( `' f " ran  E )  e. FinIII  /\  -.  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) )
9189, 90syl6bb 276 . . . . . . . . 9  |-  ( y  =  ( `' f
" ran  E )  ->  ( -.  ( y  e. FinIII  \/  ( A  \ 
y )  e. FinIII )  <->  ( -.  ( `' f " ran  E )  e. FinIII  /\  -.  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) ) )
9291rspcev 3309 . . . . . . . 8  |-  ( ( ( `' f " ran  E )  e.  ~P A  /\  ( -.  ( `' f " ran  E )  e. FinIII  /\  -.  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) )  ->  E. y  e.  ~P  A  -.  ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII ) )
9313, 44, 84, 92syl12anc 1324 . . . . . . 7  |-  ( f : A -onto-> om  ->  E. y  e.  ~P  A  -.  ( y  e. FinIII  \/  ( A  \  y )  e. FinIII ) )
94 rexnal 2995 . . . . . . 7  |-  ( E. y  e.  ~P  A  -.  ( y  e. FinIII  \/  ( A  \  y )  e. FinIII )  <->  -.  A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII ) )
9593, 94sylib 208 . . . . . 6  |-  ( f : A -onto-> om  ->  -. 
A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII ) )
9695exlimiv 1858 . . . . 5  |-  ( E. f  f : A -onto-> om  ->  -.  A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \ 
y )  e. FinIII ) )
974, 96sylbi 207 . . . 4  |-  ( om  ~<_*  A  ->  -.  A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \ 
y )  e. FinIII ) )
9897con2i 134 . . 3  |-  ( A. y  e.  ~P  A
( y  e. FinIII  \/  ( A  \  y )  e. FinIII )  ->  -.  om  ~<_*  A )
99 isfin3-2 9189 . . 3  |-  ( A  e.  V  ->  ( A  e. FinIII 
<->  -.  om  ~<_*  A ) )
10098, 99syl5ibr 236 . 2  |-  ( A  e.  V  ->  ( A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII )  ->  A  e. FinIII ) )
101100imp 445 1  |-  ( ( A  e.  V  /\  A. y  e.  ~P  A
( y  e. FinIII  \/  ( A  \  y )  e. FinIII ) )  ->  A  e. FinIII )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Oncon0 5723   suc csuc 5725   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887  (class class class)co 6650   omcom 7065   2oc2o 7554    .o comu 7558    ~<_* cwdom 8462  FinIIIcfin3 9103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wdom 8464  df-card 8765  df-fin4 9109  df-fin3 9110
This theorem is referenced by:  fin1a2lem8  9229
  Copyright terms: Public domain W3C validator