MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccdif Structured version   Visualization version   Unicode version

Theorem uniiccdif 23346
Description: A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypothesis
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
Assertion
Ref Expression
uniiccdif  |-  ( ph  ->  ( U. ran  ( (,)  o.  F )  C_  U.
ran  ( [,]  o.  F )  /\  ( vol* `  ( U. ran  ( [,]  o.  F
)  \  U. ran  ( (,)  o.  F ) ) )  =  0 ) )

Proof of Theorem uniiccdif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssun1 3776 . . 3  |-  U. ran  ( (,)  o.  F ) 
C_  ( U. ran  ( (,)  o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
2 uniioombl.1 . . . . . . . 8  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
3 ovolfcl 23235 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) ) )
42, 3sylan 488 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( 1st `  ( F `
 x ) )  e.  RR  /\  ( 2nd `  ( F `  x ) )  e.  RR  /\  ( 1st `  ( F `  x
) )  <_  ( 2nd `  ( F `  x ) ) ) )
5 rexr 10085 . . . . . . . 8  |-  ( ( 1st `  ( F `
 x ) )  e.  RR  ->  ( 1st `  ( F `  x ) )  e. 
RR* )
6 rexr 10085 . . . . . . . 8  |-  ( ( 2nd `  ( F `
 x ) )  e.  RR  ->  ( 2nd `  ( F `  x ) )  e. 
RR* )
7 id 22 . . . . . . . 8  |-  ( ( 1st `  ( F `
 x ) )  <_  ( 2nd `  ( F `  x )
)  ->  ( 1st `  ( F `  x
) )  <_  ( 2nd `  ( F `  x ) ) )
8 prunioo 12301 . . . . . . . 8  |-  ( ( ( 1st `  ( F `  x )
)  e.  RR*  /\  ( 2nd `  ( F `  x ) )  e. 
RR*  /\  ( 1st `  ( F `  x
) )  <_  ( 2nd `  ( F `  x ) ) )  ->  ( ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  u.  {
( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )  =  ( ( 1st `  ( F `  x
) ) [,] ( 2nd `  ( F `  x ) ) ) )
95, 6, 7, 8syl3an 1368 . . . . . . 7  |-  ( ( ( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) )  ->  (
( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) )  u. 
{ ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )  =  ( ( 1st `  ( F `  x
) ) [,] ( 2nd `  ( F `  x ) ) ) )
104, 9syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) )  u. 
{ ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )  =  ( ( 1st `  ( F `  x
) ) [,] ( 2nd `  ( F `  x ) ) ) )
11 fvco3 6275 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( (,)  o.  F
) `  x )  =  ( (,) `  ( F `  x )
) )
122, 11sylan 488 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( (,)  o.  F ) `
 x )  =  ( (,) `  ( F `  x )
) )
13 inss2 3834 . . . . . . . . . . . 12  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
142ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
1513, 14sseldi 3601 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  ( RR  X.  RR ) )
16 1st2nd2 7205 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  ( RR  X.  RR )  ->  ( F `
 x )  = 
<. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1715, 16syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  = 
<. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1817fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  NN )  ->  ( (,) `  ( F `  x
) )  =  ( (,) `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. ) )
19 df-ov 6653 . . . . . . . . 9  |-  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  =  ( (,) `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. )
2018, 19syl6eqr 2674 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN )  ->  ( (,) `  ( F `  x
) )  =  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) )
2112, 20eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( (,)  o.  F ) `
 x )  =  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) )
22 df-pr 4180 . . . . . . . 8  |-  { ( ( 1st  o.  F
) `  x ) ,  ( ( 2nd 
o.  F ) `  x ) }  =  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } )
23 fvco3 6275 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( 1st  o.  F
) `  x )  =  ( 1st `  ( F `  x )
) )
242, 23sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( 1st  o.  F ) `
 x )  =  ( 1st `  ( F `  x )
) )
25 fvco3 6275 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( 2nd  o.  F
) `  x )  =  ( 2nd `  ( F `  x )
) )
262, 25sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( 2nd  o.  F ) `
 x )  =  ( 2nd `  ( F `  x )
) )
2724, 26preq12d 4276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN )  ->  { ( ( 1st  o.  F
) `  x ) ,  ( ( 2nd 
o.  F ) `  x ) }  =  { ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )
2822, 27syl5eqr 2670 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( { ( ( 1st  o.  F ) `  x
) }  u.  {
( ( 2nd  o.  F ) `  x
) } )  =  { ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )
2921, 28uneq12d 3768 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( ( (,)  o.  F
) `  x )  u.  ( { ( ( 1st  o.  F ) `
 x ) }  u.  { ( ( 2nd  o.  F ) `
 x ) } ) )  =  ( ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) )  u. 
{ ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } ) )
30 fvco3 6275 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( [,]  o.  F
) `  x )  =  ( [,] `  ( F `  x )
) )
312, 30sylan 488 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( [,]  o.  F ) `
 x )  =  ( [,] `  ( F `  x )
) )
3217fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN )  ->  ( [,] `  ( F `  x
) )  =  ( [,] `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. ) )
33 df-ov 6653 . . . . . . . 8  |-  ( ( 1st `  ( F `
 x ) ) [,] ( 2nd `  ( F `  x )
) )  =  ( [,] `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. )
3432, 33syl6eqr 2674 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( [,] `  ( F `  x
) )  =  ( ( 1st `  ( F `  x )
) [,] ( 2nd `  ( F `  x
) ) ) )
3531, 34eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( [,]  o.  F ) `
 x )  =  ( ( 1st `  ( F `  x )
) [,] ( 2nd `  ( F `  x
) ) ) )
3610, 29, 353eqtr4rd 2667 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( [,]  o.  F ) `
 x )  =  ( ( ( (,) 
o.  F ) `  x )  u.  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } ) ) )
3736iuneq2dv 4542 . . . 4  |-  ( ph  ->  U_ x  e.  NN  ( ( [,]  o.  F ) `  x
)  =  U_ x  e.  NN  ( ( ( (,)  o.  F ) `
 x )  u.  ( { ( ( 1st  o.  F ) `
 x ) }  u.  { ( ( 2nd  o.  F ) `
 x ) } ) ) )
38 iccf 12272 . . . . . . 7  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
39 ffn 6045 . . . . . . 7  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  [,]  Fn  ( RR*  X.  RR* )
)
4038, 39ax-mp 5 . . . . . 6  |-  [,]  Fn  ( RR*  X.  RR* )
41 rexpssxrxp 10084 . . . . . . . 8  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
4213, 41sstri 3612 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
43 fss 6056 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
442, 42, 43sylancl 694 . . . . . 6  |-  ( ph  ->  F : NN --> ( RR*  X. 
RR* ) )
45 fnfco 6069 . . . . . 6  |-  ( ( [,]  Fn  ( RR*  X. 
RR* )  /\  F : NN --> ( RR*  X.  RR* ) )  ->  ( [,]  o.  F )  Fn  NN )
4640, 44, 45sylancr 695 . . . . 5  |-  ( ph  ->  ( [,]  o.  F
)  Fn  NN )
47 fniunfv 6505 . . . . 5  |-  ( ( [,]  o.  F )  Fn  NN  ->  U_ x  e.  NN  ( ( [,] 
o.  F ) `  x )  =  U. ran  ( [,]  o.  F
) )
4846, 47syl 17 . . . 4  |-  ( ph  ->  U_ x  e.  NN  ( ( [,]  o.  F ) `  x
)  =  U. ran  ( [,]  o.  F ) )
49 iunun 4604 . . . . 5  |-  U_ x  e.  NN  ( ( ( (,)  o.  F ) `
 x )  u.  ( { ( ( 1st  o.  F ) `
 x ) }  u.  { ( ( 2nd  o.  F ) `
 x ) } ) )  =  (
U_ x  e.  NN  ( ( (,)  o.  F ) `  x
)  u.  U_ x  e.  NN  ( { ( ( 1st  o.  F
) `  x ) }  u.  { (
( 2nd  o.  F
) `  x ) } ) )
50 ioof 12271 . . . . . . . . 9  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
51 ffn 6045 . . . . . . . . 9  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
5250, 51ax-mp 5 . . . . . . . 8  |-  (,)  Fn  ( RR*  X.  RR* )
53 fnfco 6069 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  F : NN --> ( RR*  X.  RR* ) )  ->  ( (,)  o.  F )  Fn  NN )
5452, 44, 53sylancr 695 . . . . . . 7  |-  ( ph  ->  ( (,)  o.  F
)  Fn  NN )
55 fniunfv 6505 . . . . . . 7  |-  ( ( (,)  o.  F )  Fn  NN  ->  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  =  U. ran  ( (,)  o.  F
) )
5654, 55syl 17 . . . . . 6  |-  ( ph  ->  U_ x  e.  NN  ( ( (,)  o.  F ) `  x
)  =  U. ran  ( (,)  o.  F ) )
57 iunun 4604 . . . . . . 7  |-  U_ x  e.  NN  ( { ( ( 1st  o.  F
) `  x ) }  u.  { (
( 2nd  o.  F
) `  x ) } )  =  (
U_ x  e.  NN  { ( ( 1st  o.  F ) `  x
) }  u.  U_ x  e.  NN  { ( ( 2nd  o.  F
) `  x ) } )
58 fo1st 7188 . . . . . . . . . . . . . 14  |-  1st : _V -onto-> _V
59 fofn 6117 . . . . . . . . . . . . . 14  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
6058, 59ax-mp 5 . . . . . . . . . . . . 13  |-  1st  Fn  _V
61 ssv 3625 . . . . . . . . . . . . . 14  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  _V
62 fss 6056 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  _V )  ->  F : NN --> _V )
632, 61, 62sylancl 694 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> _V )
64 fnfco 6069 . . . . . . . . . . . . 13  |-  ( ( 1st  Fn  _V  /\  F : NN --> _V )  ->  ( 1st  o.  F
)  Fn  NN )
6560, 63, 64sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st  o.  F
)  Fn  NN )
66 fnfun 5988 . . . . . . . . . . . 12  |-  ( ( 1st  o.  F )  Fn  NN  ->  Fun  ( 1st  o.  F ) )
6765, 66syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Fun  ( 1st  o.  F ) )
68 fndm 5990 . . . . . . . . . . . 12  |-  ( ( 1st  o.  F )  Fn  NN  ->  dom  ( 1st  o.  F )  =  NN )
69 eqimss2 3658 . . . . . . . . . . . 12  |-  ( dom  ( 1st  o.  F
)  =  NN  ->  NN  C_  dom  ( 1st  o.  F ) )
7065, 68, 693syl 18 . . . . . . . . . . 11  |-  ( ph  ->  NN  C_  dom  ( 1st 
o.  F ) )
71 dfimafn2 6246 . . . . . . . . . . 11  |-  ( ( Fun  ( 1st  o.  F )  /\  NN  C_ 
dom  ( 1st  o.  F ) )  -> 
( ( 1st  o.  F ) " NN )  =  U_ x  e.  NN  { ( ( 1st  o.  F ) `
 x ) } )
7267, 70, 71syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st  o.  F ) " NN )  =  U_ x  e.  NN  { ( ( 1st  o.  F ) `
 x ) } )
73 fnima 6010 . . . . . . . . . . 11  |-  ( ( 1st  o.  F )  Fn  NN  ->  (
( 1st  o.  F
) " NN )  =  ran  ( 1st 
o.  F ) )
7465, 73syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st  o.  F ) " NN )  =  ran  ( 1st 
o.  F ) )
7572, 74eqtr3d 2658 . . . . . . . . 9  |-  ( ph  ->  U_ x  e.  NN  { ( ( 1st  o.  F ) `  x
) }  =  ran  ( 1st  o.  F ) )
76 rnco2 5642 . . . . . . . . 9  |-  ran  ( 1st  o.  F )  =  ( 1st " ran  F )
7775, 76syl6eq 2672 . . . . . . . 8  |-  ( ph  ->  U_ x  e.  NN  { ( ( 1st  o.  F ) `  x
) }  =  ( 1st " ran  F
) )
78 fo2nd 7189 . . . . . . . . . . . . . 14  |-  2nd : _V -onto-> _V
79 fofn 6117 . . . . . . . . . . . . . 14  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
8078, 79ax-mp 5 . . . . . . . . . . . . 13  |-  2nd  Fn  _V
81 fnfco 6069 . . . . . . . . . . . . 13  |-  ( ( 2nd  Fn  _V  /\  F : NN --> _V )  ->  ( 2nd  o.  F
)  Fn  NN )
8280, 63, 81sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2nd  o.  F
)  Fn  NN )
83 fnfun 5988 . . . . . . . . . . . 12  |-  ( ( 2nd  o.  F )  Fn  NN  ->  Fun  ( 2nd  o.  F ) )
8482, 83syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Fun  ( 2nd  o.  F ) )
85 fndm 5990 . . . . . . . . . . . 12  |-  ( ( 2nd  o.  F )  Fn  NN  ->  dom  ( 2nd  o.  F )  =  NN )
86 eqimss2 3658 . . . . . . . . . . . 12  |-  ( dom  ( 2nd  o.  F
)  =  NN  ->  NN  C_  dom  ( 2nd  o.  F ) )
8782, 85, 863syl 18 . . . . . . . . . . 11  |-  ( ph  ->  NN  C_  dom  ( 2nd 
o.  F ) )
88 dfimafn2 6246 . . . . . . . . . . 11  |-  ( ( Fun  ( 2nd  o.  F )  /\  NN  C_ 
dom  ( 2nd  o.  F ) )  -> 
( ( 2nd  o.  F ) " NN )  =  U_ x  e.  NN  { ( ( 2nd  o.  F ) `
 x ) } )
8984, 87, 88syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd  o.  F ) " NN )  =  U_ x  e.  NN  { ( ( 2nd  o.  F ) `
 x ) } )
90 fnima 6010 . . . . . . . . . . 11  |-  ( ( 2nd  o.  F )  Fn  NN  ->  (
( 2nd  o.  F
) " NN )  =  ran  ( 2nd 
o.  F ) )
9182, 90syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd  o.  F ) " NN )  =  ran  ( 2nd 
o.  F ) )
9289, 91eqtr3d 2658 . . . . . . . . 9  |-  ( ph  ->  U_ x  e.  NN  { ( ( 2nd  o.  F ) `  x
) }  =  ran  ( 2nd  o.  F ) )
93 rnco2 5642 . . . . . . . . 9  |-  ran  ( 2nd  o.  F )  =  ( 2nd " ran  F )
9492, 93syl6eq 2672 . . . . . . . 8  |-  ( ph  ->  U_ x  e.  NN  { ( ( 2nd  o.  F ) `  x
) }  =  ( 2nd " ran  F
) )
9577, 94uneq12d 3768 . . . . . . 7  |-  ( ph  ->  ( U_ x  e.  NN  { ( ( 1st  o.  F ) `
 x ) }  u.  U_ x  e.  NN  { ( ( 2nd  o.  F ) `
 x ) } )  =  ( ( 1st " ran  F
)  u.  ( 2nd " ran  F ) ) )
9657, 95syl5eq 2668 . . . . . 6  |-  ( ph  ->  U_ x  e.  NN  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } )  =  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
9756, 96uneq12d 3768 . . . . 5  |-  ( ph  ->  ( U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  u.  U_ x  e.  NN  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } ) )  =  ( U. ran  ( (,)  o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
9849, 97syl5eq 2668 . . . 4  |-  ( ph  ->  U_ x  e.  NN  ( ( ( (,) 
o.  F ) `  x )  u.  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } ) )  =  ( U. ran  ( (,)  o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
9937, 48, 983eqtr3d 2664 . . 3  |-  ( ph  ->  U. ran  ( [,] 
o.  F )  =  ( U. ran  ( (,)  o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
1001, 99syl5sseqr 3654 . 2  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  C_  U.
ran  ( [,]  o.  F ) )
101 ovolficcss 23238 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )
1022, 101syl 17 . . . 4  |-  ( ph  ->  U. ran  ( [,] 
o.  F )  C_  RR )
103102ssdifssd 3748 . . 3  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  C_  RR )
104 omelon 8543 . . . . . . . . . . 11  |-  om  e.  On
105 nnenom 12779 . . . . . . . . . . . 12  |-  NN  ~~  om
106105ensymi 8006 . . . . . . . . . . 11  |-  om  ~~  NN
107 isnumi 8772 . . . . . . . . . . 11  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
108104, 106, 107mp2an 708 . . . . . . . . . 10  |-  NN  e.  dom  card
109 fofun 6116 . . . . . . . . . . . . 13  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
11058, 109ax-mp 5 . . . . . . . . . . . 12  |-  Fun  1st
111 ssv 3625 . . . . . . . . . . . . 13  |-  ran  F  C_ 
_V
112 fof 6115 . . . . . . . . . . . . . . 15  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
11358, 112ax-mp 5 . . . . . . . . . . . . . 14  |-  1st : _V
--> _V
114113fdmi 6052 . . . . . . . . . . . . 13  |-  dom  1st  =  _V
115111, 114sseqtr4i 3638 . . . . . . . . . . . 12  |-  ran  F  C_ 
dom  1st
116 fores 6124 . . . . . . . . . . . 12  |-  ( ( Fun  1st  /\  ran  F  C_ 
dom  1st )  ->  ( 1st  |`  ran  F ) : ran  F -onto-> ( 1st " ran  F ) )
117110, 115, 116mp2an 708 . . . . . . . . . . 11  |-  ( 1st  |`  ran  F ) : ran  F -onto-> ( 1st " ran  F )
118 ffn 6045 . . . . . . . . . . . . 13  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  NN )
1192, 118syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  NN )
120 dffn4 6121 . . . . . . . . . . . 12  |-  ( F  Fn  NN  <->  F : NN -onto-> ran  F )
121119, 120sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  F : NN -onto-> ran  F )
122 foco 6125 . . . . . . . . . . 11  |-  ( ( ( 1st  |`  ran  F
) : ran  F -onto->
( 1st " ran  F )  /\  F : NN -onto-> ran  F )  -> 
( ( 1st  |`  ran  F
)  o.  F ) : NN -onto-> ( 1st " ran  F ) )
123117, 121, 122sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st  |`  ran  F
)  o.  F ) : NN -onto-> ( 1st " ran  F ) )
124 fodomnum 8880 . . . . . . . . . 10  |-  ( NN  e.  dom  card  ->  ( ( ( 1st  |`  ran  F
)  o.  F ) : NN -onto-> ( 1st " ran  F )  -> 
( 1st " ran  F )  ~<_  NN ) )
125108, 123, 124mpsyl 68 . . . . . . . . 9  |-  ( ph  ->  ( 1st " ran  F )  ~<_  NN )
126 domentr 8015 . . . . . . . . 9  |-  ( ( ( 1st " ran  F )  ~<_  NN  /\  NN  ~~  om )  ->  ( 1st " ran  F )  ~<_  om )
127125, 105, 126sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( 1st " ran  F )  ~<_  om )
128 fofun 6116 . . . . . . . . . . . . 13  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
12978, 128ax-mp 5 . . . . . . . . . . . 12  |-  Fun  2nd
130 fof 6115 . . . . . . . . . . . . . . 15  |-  ( 2nd
: _V -onto-> _V  ->  2nd
: _V --> _V )
13178, 130ax-mp 5 . . . . . . . . . . . . . 14  |-  2nd : _V
--> _V
132131fdmi 6052 . . . . . . . . . . . . 13  |-  dom  2nd  =  _V
133111, 132sseqtr4i 3638 . . . . . . . . . . . 12  |-  ran  F  C_ 
dom  2nd
134 fores 6124 . . . . . . . . . . . 12  |-  ( ( Fun  2nd  /\  ran  F  C_ 
dom  2nd )  ->  ( 2nd  |`  ran  F ) : ran  F -onto-> ( 2nd " ran  F ) )
135129, 133, 134mp2an 708 . . . . . . . . . . 11  |-  ( 2nd  |`  ran  F ) : ran  F -onto-> ( 2nd " ran  F )
136 foco 6125 . . . . . . . . . . 11  |-  ( ( ( 2nd  |`  ran  F
) : ran  F -onto->
( 2nd " ran  F )  /\  F : NN -onto-> ran  F )  -> 
( ( 2nd  |`  ran  F
)  o.  F ) : NN -onto-> ( 2nd " ran  F ) )
137135, 121, 136sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd  |`  ran  F
)  o.  F ) : NN -onto-> ( 2nd " ran  F ) )
138 fodomnum 8880 . . . . . . . . . 10  |-  ( NN  e.  dom  card  ->  ( ( ( 2nd  |`  ran  F
)  o.  F ) : NN -onto-> ( 2nd " ran  F )  -> 
( 2nd " ran  F )  ~<_  NN ) )
139108, 137, 138mpsyl 68 . . . . . . . . 9  |-  ( ph  ->  ( 2nd " ran  F )  ~<_  NN )
140 domentr 8015 . . . . . . . . 9  |-  ( ( ( 2nd " ran  F )  ~<_  NN  /\  NN  ~~  om )  ->  ( 2nd " ran  F )  ~<_  om )
141139, 105, 140sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( 2nd " ran  F )  ~<_  om )
142 unctb 9027 . . . . . . . 8  |-  ( ( ( 1st " ran  F )  ~<_  om  /\  ( 2nd " ran  F )  ~<_  om )  ->  (
( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ~<_  om )
143127, 141, 142syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ~<_  om )
144 reldom 7961 . . . . . . . 8  |-  Rel  ~<_
145144brrelexi 5158 . . . . . . 7  |-  ( ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ~<_  om  ->  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  e.  _V )
146143, 145syl 17 . . . . . 6  |-  ( ph  ->  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  e.  _V )
147 ssid 3624 . . . . . . . 8  |-  U. ran  ( [,]  o.  F ) 
C_  U. ran  ( [,] 
o.  F )
148147, 99syl5sseq 3653 . . . . . . 7  |-  ( ph  ->  U. ran  ( [,] 
o.  F )  C_  ( U. ran  ( (,) 
o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
149 ssundif 4052 . . . . . . 7  |-  ( U. ran  ( [,]  o.  F
)  C_  ( U. ran  ( (,)  o.  F
)  u.  ( ( 1st " ran  F
)  u.  ( 2nd " ran  F ) ) )  <->  ( U. ran  ( [,]  o.  F ) 
\  U. ran  ( (,) 
o.  F ) ) 
C_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
150148, 149sylib 208 . . . . . 6  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  C_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
151 ssdomg 8001 . . . . . 6  |-  ( ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  e.  _V  ->  (
( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  C_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ->  ( U. ran  ( [,]  o.  F ) 
\  U. ran  ( (,) 
o.  F ) )  ~<_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
152146, 150, 151sylc 65 . . . . 5  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
153 domtr 8009 . . . . 5  |-  ( ( ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  /\  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ~<_  om )  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  om )
154152, 143, 153syl2anc 693 . . . 4  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  om )
155 domentr 8015 . . . 4  |-  ( ( ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  om 
/\  om  ~~  NN )  ->  ( U. ran  ( [,]  o.  F ) 
\  U. ran  ( (,) 
o.  F ) )  ~<_  NN )
156154, 106, 155sylancl 694 . . 3  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  NN )
157 ovolctb2 23260 . . 3  |-  ( ( ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  C_  RR  /\  ( U. ran  ( [,]  o.  F ) 
\  U. ran  ( (,) 
o.  F ) )  ~<_  NN )  ->  ( vol* `  ( U. ran  ( [,]  o.  F
)  \  U. ran  ( (,)  o.  F ) ) )  =  0 )
158103, 156, 157syl2anc 693 . 2  |-  ( ph  ->  ( vol* `  ( U. ran  ( [,] 
o.  F )  \  U. ran  ( (,)  o.  F ) ) )  =  0 )
159100, 158jca 554 1  |-  ( ph  ->  ( U. ran  ( (,)  o.  F )  C_  U.
ran  ( [,]  o.  F )  /\  ( vol* `  ( U. ran  ( [,]  o.  F
)  \  U. ran  ( (,)  o.  F ) ) )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   {cpr 4179   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   omcom 7065   1stc1st 7166   2ndc2nd 7167    ~~ cen 7952    ~<_ cdom 7953   cardccrd 8761   RRcr 9935   0cc0 9936   RR*cxr 10073    <_ cle 10075   NNcn 11020   (,)cioo 12175   [,]cicc 12178   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233
This theorem is referenced by:  uniioombllem3  23353  uniioombllem4  23354  uniioombllem5  23355  uniiccmbl  23358
  Copyright terms: Public domain W3C validator