MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomtr Structured version   Visualization version   Unicode version

Theorem wdomtr 8480
Description: Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomtr  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  X  ~<_*  Z )

Proof of Theorem wdomtr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relwdom 8471 . . . . 5  |-  Rel  ~<_*
21brrelex2i 5159 . . . 4  |-  ( Y  ~<_*  Z  ->  Z  e.  _V )
32adantl 482 . . 3  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  Z  e.  _V )
4 0wdom 8475 . . . 4  |-  ( Z  e.  _V  ->  (/)  ~<_*  Z )
5 breq1 4656 . . . 4  |-  ( X  =  (/)  ->  ( X  ~<_*  Z 
<->  (/) 
~<_* 
Z ) )
64, 5syl5ibrcom 237 . . 3  |-  ( Z  e.  _V  ->  ( X  =  (/)  ->  X  ~<_*  Z ) )
73, 6syl 17 . 2  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  ( X  =  (/)  ->  X  ~<_*  Z ) )
8 simpll 790 . . . . 5  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  X  ~<_*  Y )
9 brwdomn0 8474 . . . . . 6  |-  ( X  =/=  (/)  ->  ( X  ~<_*  Y  <->  E. z  z : Y -onto-> X ) )
109adantl 482 . . . . 5  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  ( X  ~<_*  Y  <->  E. z  z : Y -onto-> X ) )
118, 10mpbid 222 . . . 4  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  E. z 
z : Y -onto-> X
)
12 simpllr 799 . . . . . 6  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  Y  ~<_*  Z )
13 simplr 792 . . . . . . . 8  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  X  =/=  (/) )
14 dm0rn0 5342 . . . . . . . . . . . 12  |-  ( dom  z  =  (/)  <->  ran  z  =  (/) )
1514necon3bii 2846 . . . . . . . . . . 11  |-  ( dom  z  =/=  (/)  <->  ran  z  =/=  (/) )
1615a1i 11 . . . . . . . . . 10  |-  ( z : Y -onto-> X  -> 
( dom  z  =/=  (/)  <->  ran  z  =/=  (/) ) )
17 fof 6115 . . . . . . . . . . . 12  |-  ( z : Y -onto-> X  -> 
z : Y --> X )
18 fdm 6051 . . . . . . . . . . . 12  |-  ( z : Y --> X  ->  dom  z  =  Y
)
1917, 18syl 17 . . . . . . . . . . 11  |-  ( z : Y -onto-> X  ->  dom  z  =  Y
)
2019neeq1d 2853 . . . . . . . . . 10  |-  ( z : Y -onto-> X  -> 
( dom  z  =/=  (/)  <->  Y  =/=  (/) ) )
21 forn 6118 . . . . . . . . . . 11  |-  ( z : Y -onto-> X  ->  ran  z  =  X
)
2221neeq1d 2853 . . . . . . . . . 10  |-  ( z : Y -onto-> X  -> 
( ran  z  =/=  (/)  <->  X  =/=  (/) ) )
2316, 20, 223bitr3rd 299 . . . . . . . . 9  |-  ( z : Y -onto-> X  -> 
( X  =/=  (/)  <->  Y  =/=  (/) ) )
2423adantl 482 . . . . . . . 8  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  ( X  =/=  (/)  <->  Y  =/=  (/) ) )
2513, 24mpbid 222 . . . . . . 7  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  Y  =/=  (/) )
26 brwdomn0 8474 . . . . . . 7  |-  ( Y  =/=  (/)  ->  ( Y  ~<_*  Z  <->  E. y  y : Z -onto-> Y ) )
2725, 26syl 17 . . . . . 6  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  ( Y  ~<_*  Z  <->  E. y  y : Z -onto-> Y ) )
2812, 27mpbid 222 . . . . 5  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  E. y 
y : Z -onto-> Y
)
29 vex 3203 . . . . . . . . . 10  |-  z  e. 
_V
30 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
3129, 30coex 7118 . . . . . . . . 9  |-  ( z  o.  y )  e. 
_V
32 foco 6125 . . . . . . . . 9  |-  ( ( z : Y -onto-> X  /\  y : Z -onto-> Y
)  ->  ( z  o.  y ) : Z -onto-> X )
33 fowdom 8476 . . . . . . . . 9  |-  ( ( ( z  o.  y
)  e.  _V  /\  ( z  o.  y
) : Z -onto-> X
)  ->  X  ~<_*  Z )
3431, 32, 33sylancr 695 . . . . . . . 8  |-  ( ( z : Y -onto-> X  /\  y : Z -onto-> Y
)  ->  X  ~<_*  Z )
3534adantl 482 . . . . . . 7  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  (
z : Y -onto-> X  /\  y : Z -onto-> Y
) )  ->  X  ~<_*  Z )
3635expr 643 . . . . . 6  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  (
y : Z -onto-> Y  ->  X  ~<_*  Z ) )
3736exlimdv 1861 . . . . 5  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  ( E. y  y : Z -onto-> Y  ->  X  ~<_*  Z
) )
3828, 37mpd 15 . . . 4  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  X  ~<_*  Z )
3911, 38exlimddv 1863 . . 3  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  X  ~<_*  Z )
4039ex 450 . 2  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  ( X  =/=  (/)  ->  X  ~<_*  Z ) )
417, 40pm2.61dne 2880 1  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  X  ~<_*  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   dom cdm 5114   ran crn 5115    o. ccom 5118   -->wf 5884   -onto->wfo 5886    ~<_* cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-wdom 8464
This theorem is referenced by:  wdomen1  8481  wdomen2  8482  wdom2d  8485  wdomima2g  8491  unxpwdom2  8493  unxpwdom  8494  harwdom  8495  pwcdadom  9038  hsmexlem1  9248  hsmexlem4  9251
  Copyright terms: Public domain W3C validator