| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofull | Structured version Visualization version Unicode version | ||
| Description: The composition of two full functors is full. Proposition 3.30(d) in [Adamek] p. 35. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| Ref | Expression |
|---|---|
| cofull.f |
|
| cofull.g |
|
| Ref | Expression |
|---|---|
| cofull |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 16522 |
. . 3
| |
| 2 | fullfunc 16566 |
. . . . 5
| |
| 3 | cofull.f |
. . . . 5
| |
| 4 | 2, 3 | sseldi 3601 |
. . . 4
|
| 5 | fullfunc 16566 |
. . . . 5
| |
| 6 | cofull.g |
. . . . 5
| |
| 7 | 5, 6 | sseldi 3601 |
. . . 4
|
| 8 | 4, 7 | cofucl 16548 |
. . 3
|
| 9 | 1st2nd 7214 |
. . 3
| |
| 10 | 1, 8, 9 | sylancr 695 |
. 2
|
| 11 | 1st2ndbr 7217 |
. . . . 5
| |
| 12 | 1, 8, 11 | sylancr 695 |
. . . 4
|
| 13 | eqid 2622 |
. . . . . . . 8
| |
| 14 | eqid 2622 |
. . . . . . . 8
| |
| 15 | eqid 2622 |
. . . . . . . 8
| |
| 16 | relfull 16568 |
. . . . . . . . 9
| |
| 17 | 6 | adantr 481 |
. . . . . . . . 9
|
| 18 | 1st2ndbr 7217 |
. . . . . . . . 9
| |
| 19 | 16, 17, 18 | sylancr 695 |
. . . . . . . 8
|
| 20 | eqid 2622 |
. . . . . . . . . 10
| |
| 21 | relfunc 16522 |
. . . . . . . . . . 11
| |
| 22 | 4 | adantr 481 |
. . . . . . . . . . 11
|
| 23 | 1st2ndbr 7217 |
. . . . . . . . . . 11
| |
| 24 | 21, 22, 23 | sylancr 695 |
. . . . . . . . . 10
|
| 25 | 20, 13, 24 | funcf1 16526 |
. . . . . . . . 9
|
| 26 | simprl 794 |
. . . . . . . . 9
| |
| 27 | 25, 26 | ffvelrnd 6360 |
. . . . . . . 8
|
| 28 | simprr 796 |
. . . . . . . . 9
| |
| 29 | 25, 28 | ffvelrnd 6360 |
. . . . . . . 8
|
| 30 | 13, 14, 15, 19, 27, 29 | fullfo 16572 |
. . . . . . 7
|
| 31 | eqid 2622 |
. . . . . . . 8
| |
| 32 | relfull 16568 |
. . . . . . . . 9
| |
| 33 | 3 | adantr 481 |
. . . . . . . . 9
|
| 34 | 1st2ndbr 7217 |
. . . . . . . . 9
| |
| 35 | 32, 33, 34 | sylancr 695 |
. . . . . . . 8
|
| 36 | 20, 15, 31, 35, 26, 28 | fullfo 16572 |
. . . . . . 7
|
| 37 | foco 6125 |
. . . . . . 7
| |
| 38 | 30, 36, 37 | syl2anc 693 |
. . . . . 6
|
| 39 | 7 | adantr 481 |
. . . . . . . 8
|
| 40 | 20, 22, 39, 26, 28 | cofu2nd 16545 |
. . . . . . 7
|
| 41 | eqidd 2623 |
. . . . . . 7
| |
| 42 | 20, 22, 39, 26 | cofu1 16544 |
. . . . . . . 8
|
| 43 | 20, 22, 39, 28 | cofu1 16544 |
. . . . . . . 8
|
| 44 | 42, 43 | oveq12d 6668 |
. . . . . . 7
|
| 45 | 40, 41, 44 | foeq123d 6132 |
. . . . . 6
|
| 46 | 38, 45 | mpbird 247 |
. . . . 5
|
| 47 | 46 | ralrimivva 2971 |
. . . 4
|
| 48 | 20, 14, 31 | isfull2 16571 |
. . . 4
|
| 49 | 12, 47, 48 | sylanbrc 698 |
. . 3
|
| 50 | df-br 4654 |
. . 3
| |
| 51 | 49, 50 | sylib 208 |
. 2
|
| 52 | 10, 51 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-ixp 7909 df-cat 16329 df-cid 16330 df-func 16518 df-cofu 16520 df-full 16564 |
| This theorem is referenced by: coffth 16596 |
| Copyright terms: Public domain | W3C validator |