MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem4 Structured version   Visualization version   Unicode version

Theorem fparlem4 7280
Description: Lemma for fpar 7281. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem4  |-  ( G  Fn  B  ->  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( G  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  =  U_ y  e.  B  ( ( _V  X.  { y } )  X.  ( _V 
X.  { ( G `
 y ) } ) ) )
Distinct variable groups:    y, B    y, G

Proof of Theorem fparlem4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 coiun 5645 . 2  |-  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  U_ y  e.  B  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } )  X.  ( G
" { y } ) ) )  = 
U_ y  e.  B  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } )  X.  ( G
" { y } ) ) )
2 inss1 3833 . . . . 5  |-  ( dom 
G  i^i  ran  ( 2nd  |`  ( _V  X.  _V ) ) )  C_  dom  G
3 fndm 5990 . . . . 5  |-  ( G  Fn  B  ->  dom  G  =  B )
42, 3syl5sseq 3653 . . . 4  |-  ( G  Fn  B  ->  ( dom  G  i^i  ran  ( 2nd  |`  ( _V  X.  _V ) ) )  C_  B )
5 dfco2a 5635 . . . 4  |-  ( ( dom  G  i^i  ran  ( 2nd  |`  ( _V  X.  _V ) ) ) 
C_  B  ->  ( G  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  = 
U_ y  e.  B  ( ( `' ( 2nd  |`  ( _V  X.  _V ) ) " { y } )  X.  ( G " { y } ) ) )
64, 5syl 17 . . 3  |-  ( G  Fn  B  ->  ( G  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  = 
U_ y  e.  B  ( ( `' ( 2nd  |`  ( _V  X.  _V ) ) " { y } )  X.  ( G " { y } ) ) )
76coeq2d 5284 . 2  |-  ( G  Fn  B  ->  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( G  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  U_ y  e.  B  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } )  X.  ( G
" { y } ) ) ) )
8 inss1 3833 . . . . . . . . 9  |-  ( dom  ( { ( G `
 y ) }  X.  ( _V  X.  { y } ) )  i^i  ran  ( 2nd  |`  ( _V  X.  _V ) ) )  C_  dom  ( { ( G `
 y ) }  X.  ( _V  X.  { y } ) )
9 dmxpss 5565 . . . . . . . . 9  |-  dom  ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )  C_  { ( G `  y
) }
108, 9sstri 3612 . . . . . . . 8  |-  ( dom  ( { ( G `
 y ) }  X.  ( _V  X.  { y } ) )  i^i  ran  ( 2nd  |`  ( _V  X.  _V ) ) )  C_  { ( G `  y
) }
11 dfco2a 5635 . . . . . . . 8  |-  ( ( dom  ( { ( G `  y ) }  X.  ( _V 
X.  { y } ) )  i^i  ran  ( 2nd  |`  ( _V  X.  _V ) ) ) 
C_  { ( G `
 y ) }  ->  ( ( { ( G `  y
) }  X.  ( _V  X.  { y } ) )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  = 
U_ x  e.  {
( G `  y
) }  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { x }
)  X.  ( ( { ( G `  y ) }  X.  ( _V  X.  { y } ) ) " { x } ) ) )
1210, 11ax-mp 5 . . . . . . 7  |-  ( ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  U_ x  e.  { ( G `  y ) }  (
( `' ( 2nd  |`  ( _V  X.  _V ) ) " {
x } )  X.  ( ( { ( G `  y ) }  X.  ( _V 
X.  { y } ) ) " {
x } ) )
13 fvex 6201 . . . . . . . 8  |-  ( G `
 y )  e. 
_V
14 fparlem2 7278 . . . . . . . . . 10  |-  ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { x }
)  =  ( _V 
X.  { x }
)
15 sneq 4187 . . . . . . . . . . 11  |-  ( x  =  ( G `  y )  ->  { x }  =  { ( G `  y ) } )
1615xpeq2d 5139 . . . . . . . . . 10  |-  ( x  =  ( G `  y )  ->  ( _V  X.  { x }
)  =  ( _V 
X.  { ( G `
 y ) } ) )
1714, 16syl5eq 2668 . . . . . . . . 9  |-  ( x  =  ( G `  y )  ->  ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { x }
)  =  ( _V 
X.  { ( G `
 y ) } ) )
1815imaeq2d 5466 . . . . . . . . . 10  |-  ( x  =  ( G `  y )  ->  (
( { ( G `
 y ) }  X.  ( _V  X.  { y } ) ) " { x } )  =  ( ( { ( G `
 y ) }  X.  ( _V  X.  { y } ) ) " { ( G `  y ) } ) )
19 df-ima 5127 . . . . . . . . . . 11  |-  ( ( { ( G `  y ) }  X.  ( _V  X.  { y } ) ) " { ( G `  y ) } )  =  ran  ( ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )  |`  { ( G `  y ) } )
20 ssid 3624 . . . . . . . . . . . . . 14  |-  { ( G `  y ) }  C_  { ( G `  y ) }
21 xpssres 5434 . . . . . . . . . . . . . 14  |-  ( { ( G `  y
) }  C_  { ( G `  y ) }  ->  ( ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )  |`  { ( G `  y ) } )  =  ( { ( G `  y ) }  X.  ( _V 
X.  { y } ) ) )
2220, 21ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )  |`  { ( G `  y ) } )  =  ( { ( G `  y ) }  X.  ( _V 
X.  { y } ) )
2322rneqi 5352 . . . . . . . . . . . 12  |-  ran  (
( { ( G `
 y ) }  X.  ( _V  X.  { y } ) )  |`  { ( G `  y ) } )  =  ran  ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )
2413snnz 4309 . . . . . . . . . . . . 13  |-  { ( G `  y ) }  =/=  (/)
25 rnxp 5564 . . . . . . . . . . . . 13  |-  ( { ( G `  y
) }  =/=  (/)  ->  ran  ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )  =  ( _V  X.  {
y } ) )
2624, 25ax-mp 5 . . . . . . . . . . . 12  |-  ran  ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )  =  ( _V  X.  {
y } )
2723, 26eqtri 2644 . . . . . . . . . . 11  |-  ran  (
( { ( G `
 y ) }  X.  ( _V  X.  { y } ) )  |`  { ( G `  y ) } )  =  ( _V  X.  { y } )
2819, 27eqtri 2644 . . . . . . . . . 10  |-  ( ( { ( G `  y ) }  X.  ( _V  X.  { y } ) ) " { ( G `  y ) } )  =  ( _V  X.  { y } )
2918, 28syl6eq 2672 . . . . . . . . 9  |-  ( x  =  ( G `  y )  ->  (
( { ( G `
 y ) }  X.  ( _V  X.  { y } ) ) " { x } )  =  ( _V  X.  { y } ) )
3017, 29xpeq12d 5140 . . . . . . . 8  |-  ( x  =  ( G `  y )  ->  (
( `' ( 2nd  |`  ( _V  X.  _V ) ) " {
x } )  X.  ( ( { ( G `  y ) }  X.  ( _V 
X.  { y } ) ) " {
x } ) )  =  ( ( _V 
X.  { ( G `
 y ) } )  X.  ( _V 
X.  { y } ) ) )
3113, 30iunxsn 4603 . . . . . . 7  |-  U_ x  e.  { ( G `  y ) }  (
( `' ( 2nd  |`  ( _V  X.  _V ) ) " {
x } )  X.  ( ( { ( G `  y ) }  X.  ( _V 
X.  { y } ) ) " {
x } ) )  =  ( ( _V 
X.  { ( G `
 y ) } )  X.  ( _V 
X.  { y } ) )
3212, 31eqtri 2644 . . . . . 6  |-  ( ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  ( ( _V  X.  { ( G `  y ) } )  X.  ( _V  X.  { y } ) )
3332cnveqi 5297 . . . . 5  |-  `' ( ( { ( G `
 y ) }  X.  ( _V  X.  { y } ) )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  `' ( ( _V 
X.  { ( G `
 y ) } )  X.  ( _V 
X.  { y } ) )
34 cnvco 5308 . . . . 5  |-  `' ( ( { ( G `
 y ) }  X.  ( _V  X.  { y } ) )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  `' ( { ( G `  y ) }  X.  ( _V  X.  { y } ) ) )
35 cnvxp 5551 . . . . 5  |-  `' ( ( _V  X.  {
( G `  y
) } )  X.  ( _V  X.  {
y } ) )  =  ( ( _V 
X.  { y } )  X.  ( _V 
X.  { ( G `
 y ) } ) )
3633, 34, 353eqtr3i 2652 . . . 4  |-  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  `' ( { ( G `  y
) }  X.  ( _V  X.  { y } ) ) )  =  ( ( _V  X.  { y } )  X.  ( _V  X.  { ( G `  y ) } ) )
37 fparlem2 7278 . . . . . . . . 9  |-  ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } )  =  ( _V 
X.  { y } )
3837xpeq2i 5136 . . . . . . . 8  |-  ( { ( G `  y
) }  X.  ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } ) )  =  ( { ( G `  y ) }  X.  ( _V  X.  { y } ) )
39 fnsnfv 6258 . . . . . . . . 9  |-  ( ( G  Fn  B  /\  y  e.  B )  ->  { ( G `  y ) }  =  ( G " { y } ) )
4039xpeq1d 5138 . . . . . . . 8  |-  ( ( G  Fn  B  /\  y  e.  B )  ->  ( { ( G `
 y ) }  X.  ( `' ( 2nd  |`  ( _V  X.  _V ) ) " { y } ) )  =  ( ( G " { y } )  X.  ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } ) ) )
4138, 40syl5eqr 2670 . . . . . . 7  |-  ( ( G  Fn  B  /\  y  e.  B )  ->  ( { ( G `
 y ) }  X.  ( _V  X.  { y } ) )  =  ( ( G " { y } )  X.  ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } ) ) )
4241cnveqd 5298 . . . . . 6  |-  ( ( G  Fn  B  /\  y  e.  B )  ->  `' ( { ( G `  y ) }  X.  ( _V 
X.  { y } ) )  =  `' ( ( G " { y } )  X.  ( `' ( 2nd  |`  ( _V  X.  _V ) ) " { y } ) ) )
43 cnvxp 5551 . . . . . 6  |-  `' ( ( G " {
y } )  X.  ( `' ( 2nd  |`  ( _V  X.  _V ) ) " {
y } ) )  =  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } )  X.  ( G
" { y } ) )
4442, 43syl6eq 2672 . . . . 5  |-  ( ( G  Fn  B  /\  y  e.  B )  ->  `' ( { ( G `  y ) }  X.  ( _V 
X.  { y } ) )  =  ( ( `' ( 2nd  |`  ( _V  X.  _V ) ) " {
y } )  X.  ( G " {
y } ) ) )
4544coeq2d 5284 . . . 4  |-  ( ( G  Fn  B  /\  y  e.  B )  ->  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  `' ( { ( G `  y ) }  X.  ( _V  X.  { y } ) ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( ( `' ( 2nd  |`  ( _V  X.  _V ) ) " { y } )  X.  ( G " { y } ) ) ) )
4636, 45syl5eqr 2670 . . 3  |-  ( ( G  Fn  B  /\  y  e.  B )  ->  ( ( _V  X.  { y } )  X.  ( _V  X.  { ( G `  y ) } ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } )  X.  ( G
" { y } ) ) ) )
4746iuneq2dv 4542 . 2  |-  ( G  Fn  B  ->  U_ y  e.  B  ( ( _V  X.  { y } )  X.  ( _V 
X.  { ( G `
 y ) } ) )  =  U_ y  e.  B  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )
" { y } )  X.  ( G
" { y } ) ) ) )
481, 7, 473eqtr4a 2682 1  |-  ( G  Fn  B  ->  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( G  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  =  U_ y  e.  B  ( ( _V  X.  { y } )  X.  ( _V 
X.  { ( G `
 y ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U_ciun 4520    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118    Fn wfn 5883   ` cfv 5888   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  fpar  7281
  Copyright terms: Public domain W3C validator