| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fparlem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for fpar 7281. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fparlem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coiun 5645 |
. 2
| |
| 2 | inss1 3833 |
. . . . 5
| |
| 3 | fndm 5990 |
. . . . 5
| |
| 4 | 2, 3 | syl5sseq 3653 |
. . . 4
|
| 5 | dfco2a 5635 |
. . . 4
| |
| 6 | 4, 5 | syl 17 |
. . 3
|
| 7 | 6 | coeq2d 5284 |
. 2
|
| 8 | inss1 3833 |
. . . . . . . . 9
| |
| 9 | dmxpss 5565 |
. . . . . . . . 9
| |
| 10 | 8, 9 | sstri 3612 |
. . . . . . . 8
|
| 11 | dfco2a 5635 |
. . . . . . . 8
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . 7
|
| 13 | fvex 6201 |
. . . . . . . 8
| |
| 14 | fparlem2 7278 |
. . . . . . . . . 10
| |
| 15 | sneq 4187 |
. . . . . . . . . . 11
| |
| 16 | 15 | xpeq2d 5139 |
. . . . . . . . . 10
|
| 17 | 14, 16 | syl5eq 2668 |
. . . . . . . . 9
|
| 18 | 15 | imaeq2d 5466 |
. . . . . . . . . 10
|
| 19 | df-ima 5127 |
. . . . . . . . . . 11
| |
| 20 | ssid 3624 |
. . . . . . . . . . . . . 14
| |
| 21 | xpssres 5434 |
. . . . . . . . . . . . . 14
| |
| 22 | 20, 21 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 23 | 22 | rneqi 5352 |
. . . . . . . . . . . 12
|
| 24 | 13 | snnz 4309 |
. . . . . . . . . . . . 13
|
| 25 | rnxp 5564 |
. . . . . . . . . . . . 13
| |
| 26 | 24, 25 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 27 | 23, 26 | eqtri 2644 |
. . . . . . . . . . 11
|
| 28 | 19, 27 | eqtri 2644 |
. . . . . . . . . 10
|
| 29 | 18, 28 | syl6eq 2672 |
. . . . . . . . 9
|
| 30 | 17, 29 | xpeq12d 5140 |
. . . . . . . 8
|
| 31 | 13, 30 | iunxsn 4603 |
. . . . . . 7
|
| 32 | 12, 31 | eqtri 2644 |
. . . . . 6
|
| 33 | 32 | cnveqi 5297 |
. . . . 5
|
| 34 | cnvco 5308 |
. . . . 5
| |
| 35 | cnvxp 5551 |
. . . . 5
| |
| 36 | 33, 34, 35 | 3eqtr3i 2652 |
. . . 4
|
| 37 | fparlem2 7278 |
. . . . . . . . 9
| |
| 38 | 37 | xpeq2i 5136 |
. . . . . . . 8
|
| 39 | fnsnfv 6258 |
. . . . . . . . 9
| |
| 40 | 39 | xpeq1d 5138 |
. . . . . . . 8
|
| 41 | 38, 40 | syl5eqr 2670 |
. . . . . . 7
|
| 42 | 41 | cnveqd 5298 |
. . . . . 6
|
| 43 | cnvxp 5551 |
. . . . . 6
| |
| 44 | 42, 43 | syl6eq 2672 |
. . . . 5
|
| 45 | 44 | coeq2d 5284 |
. . . 4
|
| 46 | 36, 45 | syl5eqr 2670 |
. . 3
|
| 47 | 46 | iuneq2dv 4542 |
. 2
|
| 48 | 1, 7, 47 | 3eqtr4a 2682 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: fpar 7281 |
| Copyright terms: Public domain | W3C validator |