MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn2g Structured version   Visualization version   Unicode version

Theorem fsn2g 6405
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.)
Assertion
Ref Expression
fsn2g  |-  ( A  e.  V  ->  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )

Proof of Theorem fsn2g
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 sneq 4187 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
21feq2d 6031 . . 3  |-  ( a  =  A  ->  ( F : { a } --> B  <->  F : { A }
--> B ) )
3 fveq2 6191 . . . . 5  |-  ( a  =  A  ->  ( F `  a )  =  ( F `  A ) )
43eleq1d 2686 . . . 4  |-  ( a  =  A  ->  (
( F `  a
)  e.  B  <->  ( F `  A )  e.  B
) )
5 eqidd 2623 . . . . 5  |-  ( a  =  A  ->  F  =  F )
6 id 22 . . . . . . 7  |-  ( a  =  A  ->  a  =  A )
76, 3opeq12d 4410 . . . . . 6  |-  ( a  =  A  ->  <. a ,  ( F `  a ) >.  =  <. A ,  ( F `  A ) >. )
87sneqd 4189 . . . . 5  |-  ( a  =  A  ->  { <. a ,  ( F `  a ) >. }  =  { <. A ,  ( F `  A )
>. } )
95, 8eqeq12d 2637 . . . 4  |-  ( a  =  A  ->  ( F  =  { <. a ,  ( F `  a ) >. }  <->  F  =  { <. A ,  ( F `  A )
>. } ) )
104, 9anbi12d 747 . . 3  |-  ( a  =  A  ->  (
( ( F `  a )  e.  B  /\  F  =  { <. a ,  ( F `
 a ) >. } )  <->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `  A )
>. } ) ) )
112, 10bibi12d 335 . 2  |-  ( a  =  A  ->  (
( F : {
a } --> B  <->  ( ( F `  a )  e.  B  /\  F  =  { <. a ,  ( F `  a )
>. } ) )  <->  ( F : { A } --> B  <->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `  A )
>. } ) ) ) )
12 vex 3203 . . 3  |-  a  e. 
_V
1312fsn2 6403 . 2  |-  ( F : { a } --> B  <->  ( ( F `
 a )  e.  B  /\  F  =  { <. a ,  ( F `  a )
>. } ) )
1411, 13vtoclg 3266 1  |-  ( A  e.  V  ->  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177   <.cop 4183   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  fsnex  6538  pt1hmeo  21609  k0004val0  38452  difmapsn  39404
  Copyright terms: Public domain W3C validator