| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pt1hmeo | Structured version Visualization version Unicode version | ||
| Description: The canonical homeomorphism from a topological product on a singleton to the topology of the factor. (Contributed by Mario Carneiro, 3-Feb-2015.) (Proof shortened by AV, 18-Apr-2021.) |
| Ref | Expression |
|---|---|
| pt1hmeo.j |
|
| pt1hmeo.a |
|
| pt1hmeo.r |
|
| Ref | Expression |
|---|---|
| pt1hmeo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5163 |
. . . . 5
| |
| 2 | pt1hmeo.a |
. . . . . . 7
| |
| 3 | 2 | adantr 481 |
. . . . . 6
|
| 4 | sneq 4187 |
. . . . . . . . 9
| |
| 5 | 4 | xpeq1d 5138 |
. . . . . . . 8
|
| 6 | opeq1 4402 |
. . . . . . . . 9
| |
| 7 | 6 | sneqd 4189 |
. . . . . . . 8
|
| 8 | 5, 7 | eqeq12d 2637 |
. . . . . . 7
|
| 9 | vex 3203 |
. . . . . . . 8
| |
| 10 | vex 3203 |
. . . . . . . 8
| |
| 11 | 9, 10 | xpsn 6407 |
. . . . . . 7
|
| 12 | 8, 11 | vtoclg 3266 |
. . . . . 6
|
| 13 | 3, 12 | syl 17 |
. . . . 5
|
| 14 | 1, 13 | syl5eqr 2670 |
. . . 4
|
| 15 | 14 | mpteq2dva 4744 |
. . 3
|
| 16 | pt1hmeo.j |
. . . 4
| |
| 17 | pt1hmeo.r |
. . . 4
| |
| 18 | snex 4908 |
. . . . 5
| |
| 19 | 18 | a1i 11 |
. . . 4
|
| 20 | topontop 20718 |
. . . . . 6
| |
| 21 | 17, 20 | syl 17 |
. . . . 5
|
| 22 | 2, 21 | fsnd 6179 |
. . . 4
|
| 23 | 17 | cnmptid 21464 |
. . . . . 6
|
| 24 | 23 | adantr 481 |
. . . . 5
|
| 25 | elsni 4194 |
. . . . . . . 8
| |
| 26 | 25 | fveq2d 6195 |
. . . . . . 7
|
| 27 | fvsng 6447 |
. . . . . . . 8
| |
| 28 | 2, 17, 27 | syl2anc 693 |
. . . . . . 7
|
| 29 | 26, 28 | sylan9eqr 2678 |
. . . . . 6
|
| 30 | 29 | oveq2d 6666 |
. . . . 5
|
| 31 | 24, 30 | eleqtrrd 2704 |
. . . 4
|
| 32 | 16, 17, 19, 22, 31 | ptcn 21430 |
. . 3
|
| 33 | 15, 32 | eqeltrrd 2702 |
. 2
|
| 34 | simprr 796 |
. . . . . . . . 9
| |
| 35 | 14 | adantrr 753 |
. . . . . . . . 9
|
| 36 | 34, 35 | eqtr4d 2659 |
. . . . . . . 8
|
| 37 | simprl 794 |
. . . . . . . . . . 11
| |
| 38 | 37 | adantr 481 |
. . . . . . . . . 10
|
| 39 | eqid 2622 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | fmptd 6385 |
. . . . . . . . 9
|
| 41 | toponmax 20730 |
. . . . . . . . . . . 12
| |
| 42 | 17, 41 | syl 17 |
. . . . . . . . . . 11
|
| 43 | 42 | adantr 481 |
. . . . . . . . . 10
|
| 44 | elmapg 7870 |
. . . . . . . . . 10
| |
| 45 | 43, 18, 44 | sylancl 694 |
. . . . . . . . 9
|
| 46 | 40, 45 | mpbird 247 |
. . . . . . . 8
|
| 47 | 36, 46 | eqeltrd 2701 |
. . . . . . 7
|
| 48 | 34 | fveq1d 6193 |
. . . . . . . 8
|
| 49 | 2 | adantr 481 |
. . . . . . . . 9
|
| 50 | fvsng 6447 |
. . . . . . . . 9
| |
| 51 | 49, 37, 50 | syl2anc 693 |
. . . . . . . 8
|
| 52 | 48, 51 | eqtr2d 2657 |
. . . . . . 7
|
| 53 | 47, 52 | jca 554 |
. . . . . 6
|
| 54 | simprr 796 |
. . . . . . . 8
| |
| 55 | simprl 794 |
. . . . . . . . . 10
| |
| 56 | 42 | adantr 481 |
. . . . . . . . . . 11
|
| 57 | elmapg 7870 |
. . . . . . . . . . 11
| |
| 58 | 56, 18, 57 | sylancl 694 |
. . . . . . . . . 10
|
| 59 | 55, 58 | mpbid 222 |
. . . . . . . . 9
|
| 60 | snidg 4206 |
. . . . . . . . . . 11
| |
| 61 | 2, 60 | syl 17 |
. . . . . . . . . 10
|
| 62 | 61 | adantr 481 |
. . . . . . . . 9
|
| 63 | 59, 62 | ffvelrnd 6360 |
. . . . . . . 8
|
| 64 | 54, 63 | eqeltrd 2701 |
. . . . . . 7
|
| 65 | 2 | adantr 481 |
. . . . . . . . . . 11
|
| 66 | fsn2g 6405 |
. . . . . . . . . . 11
| |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . 10
|
| 68 | 59, 67 | mpbid 222 |
. . . . . . . . 9
|
| 69 | 68 | simprd 479 |
. . . . . . . 8
|
| 70 | 54 | opeq2d 4409 |
. . . . . . . . 9
|
| 71 | 70 | sneqd 4189 |
. . . . . . . 8
|
| 72 | 69, 71 | eqtr4d 2659 |
. . . . . . 7
|
| 73 | 64, 72 | jca 554 |
. . . . . 6
|
| 74 | 53, 73 | impbida 877 |
. . . . 5
|
| 75 | 74 | mptcnv 5534 |
. . . 4
|
| 76 | xpsng 6406 |
. . . . . . . . . . 11
| |
| 77 | 2, 17, 76 | syl2anc 693 |
. . . . . . . . . 10
|
| 78 | 77 | eqcomd 2628 |
. . . . . . . . 9
|
| 79 | 78 | fveq2d 6195 |
. . . . . . . 8
|
| 80 | 16, 79 | syl5eq 2668 |
. . . . . . 7
|
| 81 | eqid 2622 |
. . . . . . . . 9
| |
| 82 | 81 | pttoponconst 21400 |
. . . . . . . 8
|
| 83 | 19, 17, 82 | syl2anc 693 |
. . . . . . 7
|
| 84 | 80, 83 | eqeltrd 2701 |
. . . . . 6
|
| 85 | toponuni 20719 |
. . . . . 6
| |
| 86 | 84, 85 | syl 17 |
. . . . 5
|
| 87 | 86 | mpteq1d 4738 |
. . . 4
|
| 88 | 75, 87 | eqtrd 2656 |
. . 3
|
| 89 | eqid 2622 |
. . . . . 6
| |
| 90 | 89, 16 | ptpjcn 21414 |
. . . . 5
|
| 91 | 18, 22, 61, 90 | mp3an2i 1429 |
. . . 4
|
| 92 | 28 | oveq2d 6666 |
. . . 4
|
| 93 | 91, 92 | eleqtrd 2703 |
. . 3
|
| 94 | 88, 93 | eqeltrd 2701 |
. 2
|
| 95 | ishmeo 21562 |
. 2
| |
| 96 | 33, 94, 95 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-fin 7959 df-fi 8317 df-topgen 16104 df-pt 16105 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 df-cnp 21032 df-hmeo 21558 |
| This theorem is referenced by: xpstopnlem1 21612 ptcmpfi 21616 |
| Copyright terms: Public domain | W3C validator |