MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn2 Structured version   Visualization version   Unicode version

Theorem fsn2 6403
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1  |-  A  e. 
_V
Assertion
Ref Expression
fsn2  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )

Proof of Theorem fsn2
StepHypRef Expression
1 fsn2.1 . . . . . 6  |-  A  e. 
_V
21snid 4208 . . . . 5  |-  A  e. 
{ A }
3 ffvelrn 6357 . . . . 5  |-  ( ( F : { A }
--> B  /\  A  e. 
{ A } )  ->  ( F `  A )  e.  B
)
42, 3mpan2 707 . . . 4  |-  ( F : { A } --> B  ->  ( F `  A )  e.  B
)
5 ffn 6045 . . . . 5  |-  ( F : { A } --> B  ->  F  Fn  { A } )
6 dffn3 6054 . . . . . . 7  |-  ( F  Fn  { A }  <->  F : { A } --> ran  F )
76biimpi 206 . . . . . 6  |-  ( F  Fn  { A }  ->  F : { A }
--> ran  F )
8 imadmrn 5476 . . . . . . . . 9  |-  ( F
" dom  F )  =  ran  F
9 fndm 5990 . . . . . . . . . 10  |-  ( F  Fn  { A }  ->  dom  F  =  { A } )
109imaeq2d 5466 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  ( F " dom  F )  =  ( F
" { A }
) )
118, 10syl5eqr 2670 . . . . . . . 8  |-  ( F  Fn  { A }  ->  ran  F  =  ( F " { A } ) )
12 fnsnfv 6258 . . . . . . . . 9  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  { ( F `  A ) }  =  ( F
" { A }
) )
132, 12mpan2 707 . . . . . . . 8  |-  ( F  Fn  { A }  ->  { ( F `  A ) }  =  ( F " { A } ) )
1411, 13eqtr4d 2659 . . . . . . 7  |-  ( F  Fn  { A }  ->  ran  F  =  {
( F `  A
) } )
1514feq3d 6032 . . . . . 6  |-  ( F  Fn  { A }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
167, 15mpbid 222 . . . . 5  |-  ( F  Fn  { A }  ->  F : { A }
--> { ( F `  A ) } )
175, 16syl 17 . . . 4  |-  ( F : { A } --> B  ->  F : { A } --> { ( F `
 A ) } )
184, 17jca 554 . . 3  |-  ( F : { A } --> B  ->  ( ( F `
 A )  e.  B  /\  F : { A } --> { ( F `  A ) } ) )
19 snssi 4339 . . . 4  |-  ( ( F `  A )  e.  B  ->  { ( F `  A ) }  C_  B )
20 fss 6056 . . . . 5  |-  ( ( F : { A }
--> { ( F `  A ) }  /\  { ( F `  A
) }  C_  B
)  ->  F : { A } --> B )
2120ancoms 469 . . . 4  |-  ( ( { ( F `  A ) }  C_  B  /\  F : { A } --> { ( F `
 A ) } )  ->  F : { A } --> B )
2219, 21sylan 488 . . 3  |-  ( ( ( F `  A
)  e.  B  /\  F : { A } --> { ( F `  A ) } )  ->  F : { A } --> B )
2318, 22impbii 199 . 2  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } ) )
24 fvex 6201 . . . 4  |-  ( F `
 A )  e. 
_V
251, 24fsn 6402 . . 3  |-  ( F : { A } --> { ( F `  A ) }  <->  F  =  { <. A ,  ( F `  A )
>. } )
2625anbi2i 730 . 2  |-  ( ( ( F `  A
)  e.  B  /\  F : { A } --> { ( F `  A ) } )  <-> 
( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )
2723, 26bitri 264 1  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177   <.cop 4183   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  fsn2g  6405  fnressn  6425  fressnfv  6427  mapsnconst  7903  elixpsn  7947  en1  8023  mat1dimelbas  20277  0spth  26987  ldepsnlinclem1  42294  ldepsnlinclem2  42295
  Copyright terms: Public domain W3C validator