| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsneq | Structured version Visualization version Unicode version | ||
| Description: Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| fsneq.a |
|
| fsneq.b |
|
| fsneq.f |
|
| fsneq.g |
|
| Ref | Expression |
|---|---|
| fsneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsneq.f |
. . 3
| |
| 2 | fsneq.g |
. . 3
| |
| 3 | eqfnfv 6311 |
. . 3
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. 2
|
| 5 | fsneq.a |
. . . . . . . 8
| |
| 6 | snidg 4206 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl 17 |
. . . . . . 7
|
| 8 | fsneq.b |
. . . . . . . . 9
| |
| 9 | 8 | eqcomi 2631 |
. . . . . . . 8
|
| 10 | 9 | a1i 11 |
. . . . . . 7
|
| 11 | 7, 10 | eleqtrd 2703 |
. . . . . 6
|
| 12 | 11 | adantr 481 |
. . . . 5
|
| 13 | simpr 477 |
. . . . 5
| |
| 14 | fveq2 6191 |
. . . . . . 7
| |
| 15 | fveq2 6191 |
. . . . . . 7
| |
| 16 | 14, 15 | eqeq12d 2637 |
. . . . . 6
|
| 17 | 16 | rspcva 3307 |
. . . . 5
|
| 18 | 12, 13, 17 | syl2anc 693 |
. . . 4
|
| 19 | 18 | ex 450 |
. . 3
|
| 20 | simpl 473 |
. . . . . . 7
| |
| 21 | 8 | eleq2i 2693 |
. . . . . . . . . . 11
|
| 22 | 21 | biimpi 206 |
. . . . . . . . . 10
|
| 23 | velsn 4193 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | sylib 208 |
. . . . . . . . 9
|
| 25 | 24 | fveq2d 6195 |
. . . . . . . 8
|
| 26 | 25 | adantl 482 |
. . . . . . 7
|
| 27 | 24 | fveq2d 6195 |
. . . . . . . 8
|
| 28 | 27 | adantl 482 |
. . . . . . 7
|
| 29 | 20, 26, 28 | 3eqtr4d 2666 |
. . . . . 6
|
| 30 | 29 | adantll 750 |
. . . . 5
|
| 31 | 30 | ralrimiva 2966 |
. . . 4
|
| 32 | 31 | ex 450 |
. . 3
|
| 33 | 19, 32 | impbid 202 |
. 2
|
| 34 | 4, 33 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
| This theorem is referenced by: fsneqrn 39403 unirnmapsn 39406 |
| Copyright terms: Public domain | W3C validator |