Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsneqrn Structured version   Visualization version   Unicode version

Theorem fsneqrn 39403
Description: Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsneqrn.a  |-  ( ph  ->  A  e.  V )
fsneqrn.b  |-  B  =  { A }
fsneqrn.f  |-  ( ph  ->  F  Fn  B )
fsneqrn.g  |-  ( ph  ->  G  Fn  B )
Assertion
Ref Expression
fsneqrn  |-  ( ph  ->  ( F  =  G  <-> 
( F `  A
)  e.  ran  G
) )

Proof of Theorem fsneqrn
StepHypRef Expression
1 fsneqrn.f . . . . . . 7  |-  ( ph  ->  F  Fn  B )
2 dffn3 6054 . . . . . . 7  |-  ( F  Fn  B  <->  F : B
--> ran  F )
31, 2sylib 208 . . . . . 6  |-  ( ph  ->  F : B --> ran  F
)
4 fsneqrn.a . . . . . . . 8  |-  ( ph  ->  A  e.  V )
5 snidg 4206 . . . . . . . 8  |-  ( A  e.  V  ->  A  e.  { A } )
64, 5syl 17 . . . . . . 7  |-  ( ph  ->  A  e.  { A } )
7 fsneqrn.b . . . . . . . . 9  |-  B  =  { A }
87a1i 11 . . . . . . . 8  |-  ( ph  ->  B  =  { A } )
98eqcomd 2628 . . . . . . 7  |-  ( ph  ->  { A }  =  B )
106, 9eleqtrd 2703 . . . . . 6  |-  ( ph  ->  A  e.  B )
113, 10ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( F `  A
)  e.  ran  F
)
1211adantr 481 . . . 4  |-  ( (
ph  /\  F  =  G )  ->  ( F `  A )  e.  ran  F )
13 simpr 477 . . . . 5  |-  ( (
ph  /\  F  =  G )  ->  F  =  G )
1413rneqd 5353 . . . 4  |-  ( (
ph  /\  F  =  G )  ->  ran  F  =  ran  G )
1512, 14eleqtrd 2703 . . 3  |-  ( (
ph  /\  F  =  G )  ->  ( F `  A )  e.  ran  G )
1615ex 450 . 2  |-  ( ph  ->  ( F  =  G  ->  ( F `  A )  e.  ran  G ) )
17 simpr 477 . . . . . 6  |-  ( (
ph  /\  ( F `  A )  e.  ran  G )  ->  ( F `  A )  e.  ran  G )
18 fsneqrn.g . . . . . . . . . 10  |-  ( ph  ->  G  Fn  B )
19 dffn2 6047 . . . . . . . . . 10  |-  ( G  Fn  B  <->  G : B
--> _V )
2018, 19sylib 208 . . . . . . . . 9  |-  ( ph  ->  G : B --> _V )
218feq2d 6031 . . . . . . . . 9  |-  ( ph  ->  ( G : B --> _V 
<->  G : { A }
--> _V ) )
2220, 21mpbid 222 . . . . . . . 8  |-  ( ph  ->  G : { A }
--> _V )
234, 22rnsnf 39370 . . . . . . 7  |-  ( ph  ->  ran  G  =  {
( G `  A
) } )
2423adantr 481 . . . . . 6  |-  ( (
ph  /\  ( F `  A )  e.  ran  G )  ->  ran  G  =  { ( G `  A ) } )
2517, 24eleqtrd 2703 . . . . 5  |-  ( (
ph  /\  ( F `  A )  e.  ran  G )  ->  ( F `  A )  e.  {
( G `  A
) } )
26 elsni 4194 . . . . 5  |-  ( ( F `  A )  e.  { ( G `
 A ) }  ->  ( F `  A )  =  ( G `  A ) )
2725, 26syl 17 . . . 4  |-  ( (
ph  /\  ( F `  A )  e.  ran  G )  ->  ( F `  A )  =  ( G `  A ) )
284adantr 481 . . . . 5  |-  ( (
ph  /\  ( F `  A )  e.  ran  G )  ->  A  e.  V )
291adantr 481 . . . . 5  |-  ( (
ph  /\  ( F `  A )  e.  ran  G )  ->  F  Fn  B )
3018adantr 481 . . . . 5  |-  ( (
ph  /\  ( F `  A )  e.  ran  G )  ->  G  Fn  B )
3128, 7, 29, 30fsneq 39398 . . . 4  |-  ( (
ph  /\  ( F `  A )  e.  ran  G )  ->  ( F  =  G  <->  ( F `  A )  =  ( G `  A ) ) )
3227, 31mpbird 247 . . 3  |-  ( (
ph  /\  ( F `  A )  e.  ran  G )  ->  F  =  G )
3332ex 450 . 2  |-  ( ph  ->  ( ( F `  A )  e.  ran  G  ->  F  =  G ) )
3416, 33impbid 202 1  |-  ( ph  ->  ( F  =  G  <-> 
( F `  A
)  e.  ran  G
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  ssmapsn  39408
  Copyright terms: Public domain W3C validator