| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1prex | Structured version Visualization version Unicode version | ||
| Description: Relate a one-to-one function with a pair as domain and two different variables. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| f1prex.1 |
|
| f1prex.2 |
|
| Ref | Expression |
|---|---|
| f1prex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1064 |
. . . . . . 7
| |
| 2 | simpl2 1065 |
. . . . . . 7
| |
| 3 | simprl 794 |
. . . . . . . 8
| |
| 4 | f1f 6101 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
|
| 6 | fpr2g 6475 |
. . . . . . . . 9
| |
| 7 | 6 | biimpa 501 |
. . . . . . . 8
|
| 8 | 7 | simp1d 1073 |
. . . . . . 7
|
| 9 | 1, 2, 5, 8 | syl21anc 1325 |
. . . . . 6
|
| 10 | 7 | simp2d 1074 |
. . . . . . 7
|
| 11 | 1, 2, 5, 10 | syl21anc 1325 |
. . . . . 6
|
| 12 | prid1g 4295 |
. . . . . . . . . 10
| |
| 13 | 1, 12 | syl 17 |
. . . . . . . . 9
|
| 14 | prid2g 4296 |
. . . . . . . . . 10
| |
| 15 | 2, 14 | syl 17 |
. . . . . . . . 9
|
| 16 | 13, 15 | jca 554 |
. . . . . . . 8
|
| 17 | simpl3 1066 |
. . . . . . . 8
| |
| 18 | f1veqaeq 6514 |
. . . . . . . . . 10
| |
| 19 | 18 | necon3d 2815 |
. . . . . . . . 9
|
| 20 | 19 | imp 445 |
. . . . . . . 8
|
| 21 | 3, 16, 17, 20 | syl21anc 1325 |
. . . . . . 7
|
| 22 | simprr 796 |
. . . . . . 7
| |
| 23 | 21, 22 | jca 554 |
. . . . . 6
|
| 24 | neeq1 2856 |
. . . . . . . 8
| |
| 25 | f1prex.1 |
. . . . . . . 8
| |
| 26 | 24, 25 | anbi12d 747 |
. . . . . . 7
|
| 27 | neeq2 2857 |
. . . . . . . 8
| |
| 28 | f1prex.2 |
. . . . . . . 8
| |
| 29 | 27, 28 | anbi12d 747 |
. . . . . . 7
|
| 30 | 26, 29 | rspc2ev 3324 |
. . . . . 6
|
| 31 | 9, 11, 23, 30 | syl3anc 1326 |
. . . . 5
|
| 32 | 31 | ex 450 |
. . . 4
|
| 33 | 32 | exlimdv 1861 |
. . 3
|
| 34 | 33 | imp 445 |
. 2
|
| 35 | simpll1 1100 |
. . . . . . . . . . 11
| |
| 36 | simplrl 800 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | jca 554 |
. . . . . . . . . 10
|
| 38 | simpll2 1101 |
. . . . . . . . . . 11
| |
| 39 | simplrr 801 |
. . . . . . . . . . 11
| |
| 40 | 38, 39 | jca 554 |
. . . . . . . . . 10
|
| 41 | simpll3 1102 |
. . . . . . . . . 10
| |
| 42 | simprl 794 |
. . . . . . . . . 10
| |
| 43 | f1oprg 6181 |
. . . . . . . . . . 11
| |
| 44 | 43 | imp 445 |
. . . . . . . . . 10
|
| 45 | 37, 40, 41, 42, 44 | syl22anc 1327 |
. . . . . . . . 9
|
| 46 | f1of1 6136 |
. . . . . . . . 9
| |
| 47 | 45, 46 | syl 17 |
. . . . . . . 8
|
| 48 | prssi 4353 |
. . . . . . . . 9
| |
| 49 | 36, 39, 48 | syl2anc 693 |
. . . . . . . 8
|
| 50 | f1ss 6106 |
. . . . . . . 8
| |
| 51 | 47, 49, 50 | syl2anc 693 |
. . . . . . 7
|
| 52 | fvpr1g 6458 |
. . . . . . . . 9
| |
| 53 | 52 | eqcomd 2628 |
. . . . . . . 8
|
| 54 | 35, 36, 41, 53 | syl3anc 1326 |
. . . . . . 7
|
| 55 | fvpr2g 6459 |
. . . . . . . . 9
| |
| 56 | 55 | eqcomd 2628 |
. . . . . . . 8
|
| 57 | 38, 39, 41, 56 | syl3anc 1326 |
. . . . . . 7
|
| 58 | prex 4909 |
. . . . . . . 8
| |
| 59 | f1eq1 6096 |
. . . . . . . . 9
| |
| 60 | fveq1 6190 |
. . . . . . . . . . 11
| |
| 61 | 60 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 62 | fveq1 6190 |
. . . . . . . . . . 11
| |
| 63 | 62 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 64 | 61, 63 | anbi12d 747 |
. . . . . . . . 9
|
| 65 | 59, 64 | anbi12d 747 |
. . . . . . . 8
|
| 66 | 58, 65 | spcev 3300 |
. . . . . . 7
|
| 67 | 51, 54, 57, 66 | syl12anc 1324 |
. . . . . 6
|
| 68 | simprl 794 |
. . . . . . . . 9
| |
| 69 | simplrr 801 |
. . . . . . . . . . 11
| |
| 70 | simprrl 804 |
. . . . . . . . . . . 12
| |
| 71 | 70, 25 | syl 17 |
. . . . . . . . . . 11
|
| 72 | 69, 71 | mpbid 222 |
. . . . . . . . . 10
|
| 73 | simprrr 805 |
. . . . . . . . . . 11
| |
| 74 | 73, 28 | syl 17 |
. . . . . . . . . 10
|
| 75 | 72, 74 | mpbid 222 |
. . . . . . . . 9
|
| 76 | 68, 75 | jca 554 |
. . . . . . . 8
|
| 77 | 76 | ex 450 |
. . . . . . 7
|
| 78 | 77 | eximdv 1846 |
. . . . . 6
|
| 79 | 67, 78 | mpd 15 |
. . . . 5
|
| 80 | 79 | ex 450 |
. . . 4
|
| 81 | 80 | rexlimdvva 3038 |
. . 3
|
| 82 | 81 | imp 445 |
. 2
|
| 83 | 34, 82 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: istrkg3ld 25360 |
| Copyright terms: Public domain | W3C validator |