| Step | Hyp | Ref
| Expression |
| 1 | | fsovd.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐴 |
| 3 | 2 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐴) |
| 4 | 1, 3 | sselpwd 4807 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ 𝒫 𝐴) |
| 5 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ 𝒫 𝐴) |
| 6 | | eqid 2622 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) |
| 7 | 5, 6 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}):𝐵⟶𝒫 𝐴) |
| 8 | | pwexg 4850 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| 9 | 1, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| 10 | | fsovd.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 11 | 9, 10 | elmapd 7871 |
. . . . 5
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑𝑚 𝐵) ↔ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}):𝐵⟶𝒫 𝐴)) |
| 12 | 7, 11 | mpbird 247 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑𝑚 𝐵)) |
| 13 | 12 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑𝑚 𝐵)) |
| 14 | | fsovfvd.g |
. . . 4
⊢ 𝐺 = (𝐴𝑂𝐵) |
| 15 | | fsovd.fs |
. . . . 5
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 16 | 15, 1, 10 | fsovd 38302 |
. . . 4
⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 17 | 14, 16 | syl5eq 2668 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 18 | | fsovcnvlem.h |
. . . 4
⊢ 𝐻 = (𝐵𝑂𝐴) |
| 19 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑎 = 𝑑 → (𝒫 𝑏 ↑𝑚 𝑎) = (𝒫 𝑏 ↑𝑚
𝑑)) |
| 20 | | rabeq 3192 |
. . . . . . . . 9
⊢ (𝑎 = 𝑑 → {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}) |
| 21 | 20 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑎 = 𝑑 → (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) |
| 22 | 19, 21 | mpteq12dv 4733 |
. . . . . . 7
⊢ (𝑎 = 𝑑 → (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑑) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 23 | | pweq 4161 |
. . . . . . . . 9
⊢ (𝑏 = 𝑐 → 𝒫 𝑏 = 𝒫 𝑐) |
| 24 | 23 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑏 = 𝑐 → (𝒫 𝑏 ↑𝑚 𝑑) = (𝒫 𝑐 ↑𝑚
𝑑)) |
| 25 | | mpteq1 4737 |
. . . . . . . 8
⊢ (𝑏 = 𝑐 → (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) |
| 26 | 24, 25 | mpteq12dv 4733 |
. . . . . . 7
⊢ (𝑏 = 𝑐 → (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑑) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑓 ∈ (𝒫 𝑐 ↑𝑚 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 27 | 22, 26 | cbvmpt2v 6735 |
. . . . . 6
⊢ (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) = (𝑑 ∈ V, 𝑐 ∈ V ↦ (𝑓 ∈ (𝒫 𝑐 ↑𝑚 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 28 | | eqid 2622 |
. . . . . . 7
⊢ V =
V |
| 29 | | fveq1 6190 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑓‘𝑥) = (𝑔‘𝑥)) |
| 30 | 29 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑦 ∈ (𝑓‘𝑥) ↔ 𝑦 ∈ (𝑔‘𝑥))) |
| 31 | 30 | rabbidv 3189 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)}) |
| 32 | 31 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)})) |
| 33 | 32 | cbvmptv 4750 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝒫 𝑐 ↑𝑚
𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑔 ∈ (𝒫 𝑐 ↑𝑚 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)})) |
| 34 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑢 → (𝑦 ∈ (𝑔‘𝑥) ↔ 𝑢 ∈ (𝑔‘𝑥))) |
| 35 | 34 | rabbidv 3189 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑢 → {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)} = {𝑥 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑥)}) |
| 36 | 35 | cbvmptv 4750 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)}) = (𝑢 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑥)}) |
| 37 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (𝑔‘𝑥) = (𝑔‘𝑣)) |
| 38 | 37 | eleq2d 2687 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑣 → (𝑢 ∈ (𝑔‘𝑥) ↔ 𝑢 ∈ (𝑔‘𝑣))) |
| 39 | 38 | cbvrabv 3199 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑥)} = {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)} |
| 40 | 39 | mpteq2i 4741 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑥)}) = (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)}) |
| 41 | 36, 40 | eqtri 2644 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)}) = (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)}) |
| 42 | 41 | mpteq2i 4741 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝒫 𝑐 ↑𝑚
𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)})) = (𝑔 ∈ (𝒫 𝑐 ↑𝑚 𝑑) ↦ (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)})) |
| 43 | 33, 42 | eqtri 2644 |
. . . . . . 7
⊢ (𝑓 ∈ (𝒫 𝑐 ↑𝑚
𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑔 ∈ (𝒫 𝑐 ↑𝑚 𝑑) ↦ (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)})) |
| 44 | 28, 28, 43 | mpt2eq123i 6718 |
. . . . . 6
⊢ (𝑑 ∈ V, 𝑐 ∈ V ↦ (𝑓 ∈ (𝒫 𝑐 ↑𝑚 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) = (𝑑 ∈ V, 𝑐 ∈ V ↦ (𝑔 ∈ (𝒫 𝑐 ↑𝑚 𝑑) ↦ (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)}))) |
| 45 | 15, 27, 44 | 3eqtri 2648 |
. . . . 5
⊢ 𝑂 = (𝑑 ∈ V, 𝑐 ∈ V ↦ (𝑔 ∈ (𝒫 𝑐 ↑𝑚 𝑑) ↦ (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)}))) |
| 46 | 45, 10, 1 | fsovd 38302 |
. . . 4
⊢ (𝜑 → (𝐵𝑂𝐴) = (𝑔 ∈ (𝒫 𝐴 ↑𝑚 𝐵) ↦ (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ (𝑔‘𝑣)}))) |
| 47 | 18, 46 | syl5eq 2668 |
. . 3
⊢ (𝜑 → 𝐻 = (𝑔 ∈ (𝒫 𝐴 ↑𝑚 𝐵) ↦ (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ (𝑔‘𝑣)}))) |
| 48 | | fveq1 6190 |
. . . . . 6
⊢ (𝑔 = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) → (𝑔‘𝑣) = ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)) |
| 49 | 48 | eleq2d 2687 |
. . . . 5
⊢ (𝑔 = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) → (𝑢 ∈ (𝑔‘𝑣) ↔ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣))) |
| 50 | 49 | rabbidv 3189 |
. . . 4
⊢ (𝑔 = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) → {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ (𝑔‘𝑣)} = {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)}) |
| 51 | 50 | mpteq2dv 4745 |
. . 3
⊢ (𝑔 = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) → (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ (𝑔‘𝑣)}) = (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)})) |
| 52 | 13, 17, 47, 51 | fmptco 6396 |
. 2
⊢ (𝜑 → (𝐻 ∘ 𝐺) = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)}))) |
| 53 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})) |
| 54 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑣 → (𝑦 ∈ (𝑓‘𝑥) ↔ 𝑣 ∈ (𝑓‘𝑥))) |
| 55 | 54 | rabbidv 3189 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑣 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)}) |
| 56 | 55 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) ∧ 𝑦 = 𝑣) → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)}) |
| 57 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
| 58 | | rabexg 4812 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ∈ V) |
| 59 | 1, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ∈ V) |
| 60 | 59 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ∈ V) |
| 61 | 53, 56, 57, 60 | fvmptd 6288 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣) = {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)}) |
| 62 | 61 | eleq2d 2687 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣) ↔ 𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)})) |
| 63 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑓‘𝑥) = (𝑓‘𝑢)) |
| 64 | 63 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (𝑣 ∈ (𝑓‘𝑥) ↔ 𝑣 ∈ (𝑓‘𝑢))) |
| 65 | 64 | elrab3 3364 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝐴 → (𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ↔ 𝑣 ∈ (𝑓‘𝑢))) |
| 66 | 65 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ↔ 𝑣 ∈ (𝑓‘𝑢))) |
| 67 | 62, 66 | bitrd 268 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣) ↔ 𝑣 ∈ (𝑓‘𝑢))) |
| 68 | 67 | rabbidva 3188 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)} = {𝑣 ∈ 𝐵 ∣ 𝑣 ∈ (𝑓‘𝑢)}) |
| 69 | 68 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) ∧ 𝑢 ∈ 𝐴) → {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)} = {𝑣 ∈ 𝐵 ∣ 𝑣 ∈ (𝑓‘𝑢)}) |
| 70 | | dfin5 3582 |
. . . . . . 7
⊢ (𝐵 ∩ (𝑓‘𝑢)) = {𝑣 ∈ 𝐵 ∣ 𝑣 ∈ (𝑓‘𝑢)} |
| 71 | | elmapi 7879 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (𝒫 𝐵 ↑𝑚
𝐴) → 𝑓:𝐴⟶𝒫 𝐵) |
| 72 | 71 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) ∧ 𝑢 ∈ 𝐴) → 𝑓:𝐴⟶𝒫 𝐵) |
| 73 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
| 74 | 72, 73 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) ∈ 𝒫 𝐵) |
| 75 | 74 | elpwid 4170 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) ⊆ 𝐵) |
| 76 | | sseqin2 3817 |
. . . . . . . 8
⊢ ((𝑓‘𝑢) ⊆ 𝐵 ↔ (𝐵 ∩ (𝑓‘𝑢)) = (𝑓‘𝑢)) |
| 77 | 75, 76 | sylib 208 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝐵 ∩ (𝑓‘𝑢)) = (𝑓‘𝑢)) |
| 78 | 70, 77 | syl5reqr 2671 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) = {𝑣 ∈ 𝐵 ∣ 𝑣 ∈ (𝑓‘𝑢)}) |
| 79 | 69, 78 | eqtr4d 2659 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) ∧ 𝑢 ∈ 𝐴) → {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)} = (𝑓‘𝑢)) |
| 80 | 79 | mpteq2dva 4744 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) → (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)}) = (𝑢 ∈ 𝐴 ↦ (𝑓‘𝑢))) |
| 81 | 71 | feqmptd 6249 |
. . . . 5
⊢ (𝑓 ∈ (𝒫 𝐵 ↑𝑚
𝐴) → 𝑓 = (𝑢 ∈ 𝐴 ↦ (𝑓‘𝑢))) |
| 82 | 81 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) → 𝑓 = (𝑢 ∈ 𝐴 ↦ (𝑓‘𝑢))) |
| 83 | 80, 82 | eqtr4d 2659 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) → (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)}) = 𝑓) |
| 84 | 83 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)})) = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ 𝑓)) |
| 85 | | mptresid 5456 |
. . 3
⊢ (𝑓 ∈ (𝒫 𝐵 ↑𝑚
𝐴) ↦ 𝑓) = ( I ↾ (𝒫 𝐵 ↑𝑚
𝐴)) |
| 86 | 85 | a1i 11 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ 𝑓) = ( I ↾ (𝒫 𝐵 ↑𝑚 𝐴))) |
| 87 | 52, 84, 86 | 3eqtrd 2660 |
1
⊢ (𝜑 → (𝐻 ∘ 𝐺) = ( I ↾ (𝒫 𝐵 ↑𝑚 𝐴))) |