MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfull2 Structured version   Visualization version   Unicode version

Theorem isfull2 16571
Description: Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b  |-  B  =  ( Base `  C
)
isfull.j  |-  J  =  ( Hom  `  D
)
isfull.h  |-  H  =  ( Hom  `  C
)
Assertion
Ref Expression
isfull2  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y )
-onto-> ( ( F `  x ) J ( F `  y ) ) ) )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, H, y   
x, J, y    x, F, y    x, G, y

Proof of Theorem isfull2
StepHypRef Expression
1 isfull.b . . 3  |-  B  =  ( Base `  C
)
2 isfull.j . . 3  |-  J  =  ( Hom  `  D
)
31, 2isfull 16570 . 2  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
4 isfull.h . . . . . . 7  |-  H  =  ( Hom  `  C
)
5 simpll 790 . . . . . . 7  |-  ( ( ( F ( C 
Func  D ) G  /\  x  e.  B )  /\  y  e.  B
)  ->  F ( C  Func  D ) G )
6 simplr 792 . . . . . . 7  |-  ( ( ( F ( C 
Func  D ) G  /\  x  e.  B )  /\  y  e.  B
)  ->  x  e.  B )
7 simpr 477 . . . . . . 7  |-  ( ( ( F ( C 
Func  D ) G  /\  x  e.  B )  /\  y  e.  B
)  ->  y  e.  B )
81, 4, 2, 5, 6, 7funcf2 16528 . . . . . 6  |-  ( ( ( F ( C 
Func  D ) G  /\  x  e.  B )  /\  y  e.  B
)  ->  ( x G y ) : ( x H y ) --> ( ( F `
 x ) J ( F `  y
) ) )
9 ffn 6045 . . . . . 6  |-  ( ( x G y ) : ( x H y ) --> ( ( F `  x ) J ( F `  y ) )  -> 
( x G y )  Fn  ( x H y ) )
10 df-fo 5894 . . . . . . 7  |-  ( ( x G y ) : ( x H y ) -onto-> ( ( F `  x ) J ( F `  y ) )  <->  ( (
x G y )  Fn  ( x H y )  /\  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
1110baib 944 . . . . . 6  |-  ( ( x G y )  Fn  ( x H y )  ->  (
( x G y ) : ( x H y ) -onto-> ( ( F `  x
) J ( F `
 y ) )  <->  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
128, 9, 113syl 18 . . . . 5  |-  ( ( ( F ( C 
Func  D ) G  /\  x  e.  B )  /\  y  e.  B
)  ->  ( (
x G y ) : ( x H y ) -onto-> ( ( F `  x ) J ( F `  y ) )  <->  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
1312ralbidva 2985 . . . 4  |-  ( ( F ( C  Func  D ) G  /\  x  e.  B )  ->  ( A. y  e.  B  ( x G y ) : ( x H y ) -onto-> ( ( F `  x
) J ( F `
 y ) )  <->  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
1413ralbidva 2985 . . 3  |-  ( F ( C  Func  D
) G  ->  ( A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y ) -onto-> ( ( F `  x
) J ( F `
 y ) )  <->  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
1514pm5.32i 669 . 2  |-  ( ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  (
x G y ) : ( x H y ) -onto-> ( ( F `  x ) J ( F `  y ) ) )  <-> 
( F ( C 
Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
163, 15bitr4i 267 1  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y )
-onto-> ( ( F `  x ) J ( F `  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952    Func cfunc 16514   Full cful 16562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-full 16564
This theorem is referenced by:  fullfo  16572  isffth2  16576  cofull  16594  fullestrcsetc  16791  fullsetcestrc  16806
  Copyright terms: Public domain W3C validator