MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass2 Structured version   Visualization version   Unicode version

Theorem funimass2 5972
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass2  |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) )  -> 
( F " A
)  C_  B )

Proof of Theorem funimass2
StepHypRef Expression
1 imass2 5501 . 2  |-  ( A 
C_  ( `' F " B )  ->  ( F " A )  C_  ( F " ( `' F " B ) ) )
2 funimacnv 5970 . . . . 5  |-  ( Fun 
F  ->  ( F " ( `' F " B ) )  =  ( B  i^i  ran  F ) )
32sseq2d 3633 . . . 4  |-  ( Fun 
F  ->  ( ( F " A )  C_  ( F " ( `' F " B ) )  <->  ( F " A )  C_  ( B  i^i  ran  F )
) )
4 inss1 3833 . . . . 5  |-  ( B  i^i  ran  F )  C_  B
5 sstr2 3610 . . . . 5  |-  ( ( F " A ) 
C_  ( B  i^i  ran 
F )  ->  (
( B  i^i  ran  F )  C_  B  ->  ( F " A ) 
C_  B ) )
64, 5mpi 20 . . . 4  |-  ( ( F " A ) 
C_  ( B  i^i  ran 
F )  ->  ( F " A )  C_  B )
73, 6syl6bi 243 . . 3  |-  ( Fun 
F  ->  ( ( F " A )  C_  ( F " ( `' F " B ) )  ->  ( F " A )  C_  B
) )
87imp 445 . 2  |-  ( ( Fun  F  /\  ( F " A )  C_  ( F " ( `' F " B ) ) )  ->  ( F " A )  C_  B )
91, 8sylan2 491 1  |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) )  -> 
( F " A
)  C_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    i^i cin 3573    C_ wss 3574   `'ccnv 5113   ran crn 5115   "cima 5117   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890
This theorem is referenced by:  fvimacnvi  6331  lmhmlsp  19049  2ndcomap  21261  tgqtop  21515  kqreglem1  21544  fmfnfmlem4  21761  fmucnd  22096  cfilucfil  22364
  Copyright terms: Public domain W3C validator