MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcomap Structured version   Visualization version   Unicode version

Theorem 2ndcomap 21261
Description: A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
2ndcomap.2  |-  Y  = 
U. K
2ndcomap.3  |-  ( ph  ->  J  e.  2ndc )
2ndcomap.5  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2ndcomap.6  |-  ( ph  ->  ran  F  =  Y )
2ndcomap.7  |-  ( (
ph  /\  x  e.  J )  ->  ( F " x )  e.  K )
Assertion
Ref Expression
2ndcomap  |-  ( ph  ->  K  e.  2ndc )
Distinct variable groups:    x, F    x, J    ph, x    x, K
Allowed substitution hint:    Y( x)

Proof of Theorem 2ndcomap
Dummy variables  k  m  t  w  z 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndcomap.5 . . . . . 6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 cntop2 21045 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
31, 2syl 17 . . . . 5  |-  ( ph  ->  K  e.  Top )
43ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  K  e.  Top )
5 simplll 798 . . . . . . 7  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  x  e.  b )  ->  ph )
6 bastg 20770 . . . . . . . . . 10  |-  ( b  e.  TopBases  ->  b  C_  ( topGen `
 b ) )
76ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  b  C_  ( topGen `  b )
)
8 simprr 796 . . . . . . . . 9  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  ( topGen `
 b )  =  J )
97, 8sseqtrd 3641 . . . . . . . 8  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  b  C_  J )
109sselda 3603 . . . . . . 7  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  x  e.  b )  ->  x  e.  J )
11 2ndcomap.7 . . . . . . 7  |-  ( (
ph  /\  x  e.  J )  ->  ( F " x )  e.  K )
125, 10, 11syl2anc 693 . . . . . 6  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  x  e.  b )  ->  ( F " x
)  e.  K )
13 eqid 2622 . . . . . 6  |-  ( x  e.  b  |->  ( F
" x ) )  =  ( x  e.  b  |->  ( F "
x ) )
1412, 13fmptd 6385 . . . . 5  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  (
x  e.  b  |->  ( F " x ) ) : b --> K )
15 frn 6053 . . . . 5  |-  ( ( x  e.  b  |->  ( F " x ) ) : b --> K  ->  ran  ( x  e.  b  |->  ( F
" x ) ) 
C_  K )
1614, 15syl 17 . . . 4  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  ran  ( x  e.  b  |->  ( F " x
) )  C_  K
)
17 elunii 4441 . . . . . . . . . . 11  |-  ( ( z  e.  k  /\  k  e.  K )  ->  z  e.  U. K
)
18 2ndcomap.2 . . . . . . . . . . 11  |-  Y  = 
U. K
1917, 18syl6eleqr 2712 . . . . . . . . . 10  |-  ( ( z  e.  k  /\  k  e.  K )  ->  z  e.  Y )
2019ancoms 469 . . . . . . . . 9  |-  ( ( k  e.  K  /\  z  e.  k )  ->  z  e.  Y )
2120adantl 482 . . . . . . . 8  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( k  e.  K  /\  z  e.  k
) )  ->  z  e.  Y )
22 2ndcomap.6 . . . . . . . . 9  |-  ( ph  ->  ran  F  =  Y )
2322ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( k  e.  K  /\  z  e.  k
) )  ->  ran  F  =  Y )
2421, 23eleqtrrd 2704 . . . . . . 7  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( k  e.  K  /\  z  e.  k
) )  ->  z  e.  ran  F )
25 eqid 2622 . . . . . . . . . . 11  |-  U. J  =  U. J
2625, 18cnf 21050 . . . . . . . . . 10  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> Y )
271, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  F : U. J --> Y )
2827ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( k  e.  K  /\  z  e.  k
) )  ->  F : U. J --> Y )
29 ffn 6045 . . . . . . . 8  |-  ( F : U. J --> Y  ->  F  Fn  U. J )
30 fvelrnb 6243 . . . . . . . 8  |-  ( F  Fn  U. J  -> 
( z  e.  ran  F  <->  E. t  e.  U. J
( F `  t
)  =  z ) )
3128, 29, 303syl 18 . . . . . . 7  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( k  e.  K  /\  z  e.  k
) )  ->  (
z  e.  ran  F  <->  E. t  e.  U. J
( F `  t
)  =  z ) )
3224, 31mpbid 222 . . . . . 6  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( k  e.  K  /\  z  e.  k
) )  ->  E. t  e.  U. J ( F `
 t )  =  z )
331ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  F  e.  ( J  Cn  K
) )
34 simprll 802 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  k  e.  K )
35 cnima 21069 . . . . . . . . . . 11  |-  ( ( F  e.  ( J  Cn  K )  /\  k  e.  K )  ->  ( `' F "
k )  e.  J
)
3633, 34, 35syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  ( `' F " k )  e.  J )
378adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  ( topGen `
 b )  =  J )
3836, 37eleqtrrd 2704 . . . . . . . . 9  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  ( `' F " k )  e.  ( topGen `  b
) )
39 simprrl 804 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  t  e.  U. J )
40 simprrr 805 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  ( F `  t )  =  z )
41 simprlr 803 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  z  e.  k )
4240, 41eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  ( F `  t )  e.  k )
4328, 29syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( k  e.  K  /\  z  e.  k
) )  ->  F  Fn  U. J )
4443adantrr 753 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  F  Fn  U. J )
45 elpreima 6337 . . . . . . . . . . 11  |-  ( F  Fn  U. J  -> 
( t  e.  ( `' F " k )  <-> 
( t  e.  U. J  /\  ( F `  t )  e.  k ) ) )
4644, 45syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  (
t  e.  ( `' F " k )  <-> 
( t  e.  U. J  /\  ( F `  t )  e.  k ) ) )
4739, 42, 46mpbir2and 957 . . . . . . . . 9  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  t  e.  ( `' F "
k ) )
48 tg2 20769 . . . . . . . . 9  |-  ( ( ( `' F "
k )  e.  (
topGen `  b )  /\  t  e.  ( `' F " k ) )  ->  E. m  e.  b  ( t  e.  m  /\  m  C_  ( `' F " k ) ) )
4938, 47, 48syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  E. m  e.  b  ( t  e.  m  /\  m  C_  ( `' F "
k ) ) )
50 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  ->  m  e.  b )
51 eqid 2622 . . . . . . . . . . 11  |-  ( F
" m )  =  ( F " m
)
52 imaeq2 5462 . . . . . . . . . . . . 13  |-  ( x  =  m  ->  ( F " x )  =  ( F " m
) )
5352eqeq2d 2632 . . . . . . . . . . . 12  |-  ( x  =  m  ->  (
( F " m
)  =  ( F
" x )  <->  ( F " m )  =  ( F " m ) ) )
5453rspcev 3309 . . . . . . . . . . 11  |-  ( ( m  e.  b  /\  ( F " m )  =  ( F "
m ) )  ->  E. x  e.  b 
( F " m
)  =  ( F
" x ) )
5550, 51, 54sylancl 694 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  ->  E. x  e.  b 
( F " m
)  =  ( F
" x ) )
5644adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  ->  F  Fn  U. J )
57 fnfun 5988 . . . . . . . . . . . . . 14  |-  ( F  Fn  U. J  ->  Fun  F )
5856, 57syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  ->  Fun  F )
59 simprrr 805 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  ->  m  C_  ( `' F " k ) )
60 funimass2 5972 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  m  C_  ( `' F "
k ) )  -> 
( F " m
)  C_  k )
6158, 59, 60syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  -> 
( F " m
)  C_  k )
62 vex 3203 . . . . . . . . . . . 12  |-  k  e. 
_V
63 ssexg 4804 . . . . . . . . . . . 12  |-  ( ( ( F " m
)  C_  k  /\  k  e.  _V )  ->  ( F " m
)  e.  _V )
6461, 62, 63sylancl 694 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  -> 
( F " m
)  e.  _V )
6513elrnmpt 5372 . . . . . . . . . . 11  |-  ( ( F " m )  e.  _V  ->  (
( F " m
)  e.  ran  (
x  e.  b  |->  ( F " x ) )  <->  E. x  e.  b  ( F " m
)  =  ( F
" x ) ) )
6664, 65syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  -> 
( ( F "
m )  e.  ran  ( x  e.  b  |->  ( F " x
) )  <->  E. x  e.  b  ( F " m )  =  ( F " x ) ) )
6755, 66mpbird 247 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  -> 
( F " m
)  e.  ran  (
x  e.  b  |->  ( F " x ) ) )
6840adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  -> 
( F `  t
)  =  z )
69 simprrl 804 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  -> 
t  e.  m )
70 cnvimass 5485 . . . . . . . . . . . . 13  |-  ( `' F " k ) 
C_  dom  F
7159, 70syl6ss 3615 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  ->  m  C_  dom  F )
72 funfvima2 6493 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  m  C_ 
dom  F )  -> 
( t  e.  m  ->  ( F `  t
)  e.  ( F
" m ) ) )
7358, 71, 72syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  -> 
( t  e.  m  ->  ( F `  t
)  e.  ( F
" m ) ) )
7469, 73mpd 15 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  -> 
( F `  t
)  e.  ( F
" m ) )
7568, 74eqeltrrd 2702 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  -> 
z  e.  ( F
" m ) )
76 eleq2 2690 . . . . . . . . . . 11  |-  ( w  =  ( F "
m )  ->  (
z  e.  w  <->  z  e.  ( F " m ) ) )
77 sseq1 3626 . . . . . . . . . . 11  |-  ( w  =  ( F "
m )  ->  (
w  C_  k  <->  ( F " m )  C_  k
) )
7876, 77anbi12d 747 . . . . . . . . . 10  |-  ( w  =  ( F "
m )  ->  (
( z  e.  w  /\  w  C_  k )  <-> 
( z  e.  ( F " m )  /\  ( F "
m )  C_  k
) ) )
7978rspcev 3309 . . . . . . . . 9  |-  ( ( ( F " m
)  e.  ran  (
x  e.  b  |->  ( F " x ) )  /\  ( z  e.  ( F "
m )  /\  ( F " m )  C_  k ) )  ->  E. w  e.  ran  ( x  e.  b  |->  ( F " x
) ) ( z  e.  w  /\  w  C_  k ) )
8067, 75, 61, 79syl12anc 1324 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  /\  (
m  e.  b  /\  ( t  e.  m  /\  m  C_  ( `' F " k ) ) ) )  ->  E. w  e.  ran  ( x  e.  b  |->  ( F " x
) ) ( z  e.  w  /\  w  C_  k ) )
8149, 80rexlimddv 3035 . . . . . . 7  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( ( k  e.  K  /\  z  e.  k )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) ) )  ->  E. w  e.  ran  ( x  e.  b  |->  ( F "
x ) ) ( z  e.  w  /\  w  C_  k ) )
8281anassrs 680 . . . . . 6  |-  ( ( ( ( ( ph  /\  b  e.  TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  /\  ( k  e.  K  /\  z  e.  k
) )  /\  (
t  e.  U. J  /\  ( F `  t
)  =  z ) )  ->  E. w  e.  ran  ( x  e.  b  |->  ( F "
x ) ) ( z  e.  w  /\  w  C_  k ) )
8332, 82rexlimddv 3035 . . . . 5  |-  ( ( ( ( ph  /\  b  e.  TopBases )  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  /\  ( k  e.  K  /\  z  e.  k
) )  ->  E. w  e.  ran  ( x  e.  b  |->  ( F "
x ) ) ( z  e.  w  /\  w  C_  k ) )
8483ralrimivva 2971 . . . 4  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  A. k  e.  K  A. z  e.  k  E. w  e.  ran  ( x  e.  b  |->  ( F "
x ) ) ( z  e.  w  /\  w  C_  k ) )
85 basgen2 20793 . . . 4  |-  ( ( K  e.  Top  /\  ran  ( x  e.  b 
|->  ( F " x
) )  C_  K  /\  A. k  e.  K  A. z  e.  k  E. w  e.  ran  ( x  e.  b  |->  ( F " x
) ) ( z  e.  w  /\  w  C_  k ) )  -> 
( topGen `  ran  ( x  e.  b  |->  ( F
" x ) ) )  =  K )
864, 16, 84, 85syl3anc 1326 . . 3  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  ( topGen `
 ran  ( x  e.  b  |->  ( F
" x ) ) )  =  K )
8786, 4eqeltrd 2701 . . . . 5  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  ( topGen `
 ran  ( x  e.  b  |->  ( F
" x ) ) )  e.  Top )
88 tgclb 20774 . . . . 5  |-  ( ran  ( x  e.  b 
|->  ( F " x
) )  e.  TopBases  <->  ( topGen ` 
ran  ( x  e.  b  |->  ( F "
x ) ) )  e.  Top )
8987, 88sylibr 224 . . . 4  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  ran  ( x  e.  b  |->  ( F " x
) )  e.  TopBases )
90 omelon 8543 . . . . . . 7  |-  om  e.  On
91 simprl 794 . . . . . . 7  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  b  ~<_  om )
92 ondomen 8860 . . . . . . 7  |-  ( ( om  e.  On  /\  b  ~<_  om )  ->  b  e.  dom  card )
9390, 91, 92sylancr 695 . . . . . 6  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  b  e.  dom  card )
94 ffn 6045 . . . . . . . 8  |-  ( ( x  e.  b  |->  ( F " x ) ) : b --> K  ->  ( x  e.  b  |->  ( F "
x ) )  Fn  b )
9514, 94syl 17 . . . . . . 7  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  (
x  e.  b  |->  ( F " x ) )  Fn  b )
96 dffn4 6121 . . . . . . 7  |-  ( ( x  e.  b  |->  ( F " x ) )  Fn  b  <->  ( x  e.  b  |->  ( F
" x ) ) : b -onto-> ran  (
x  e.  b  |->  ( F " x ) ) )
9795, 96sylib 208 . . . . . 6  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  (
x  e.  b  |->  ( F " x ) ) : b -onto-> ran  ( x  e.  b 
|->  ( F " x
) ) )
98 fodomnum 8880 . . . . . 6  |-  ( b  e.  dom  card  ->  ( ( x  e.  b 
|->  ( F " x
) ) : b
-onto->
ran  ( x  e.  b  |->  ( F "
x ) )  ->  ran  ( x  e.  b 
|->  ( F " x
) )  ~<_  b ) )
9993, 97, 98sylc 65 . . . . 5  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  ran  ( x  e.  b  |->  ( F " x
) )  ~<_  b )
100 domtr 8009 . . . . 5  |-  ( ( ran  ( x  e.  b  |->  ( F "
x ) )  ~<_  b  /\  b  ~<_  om )  ->  ran  ( x  e.  b  |->  ( F "
x ) )  ~<_  om )
10199, 91, 100syl2anc 693 . . . 4  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  ran  ( x  e.  b  |->  ( F " x
) )  ~<_  om )
102 2ndci 21251 . . . 4  |-  ( ( ran  ( x  e.  b  |->  ( F "
x ) )  e.  TopBases 
/\  ran  ( x  e.  b  |->  ( F
" x ) )  ~<_  om )  ->  ( topGen `
 ran  ( x  e.  b  |->  ( F
" x ) ) )  e.  2ndc )
10389, 101, 102syl2anc 693 . . 3  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  ( topGen `
 ran  ( x  e.  b  |->  ( F
" x ) ) )  e.  2ndc )
10486, 103eqeltrrd 2702 . 2  |-  ( ( ( ph  /\  b  e. 
TopBases )  /\  ( b  ~<_  om  /\  ( topGen `  b )  =  J ) )  ->  K  e.  2ndc )
105 2ndcomap.3 . . 3  |-  ( ph  ->  J  e.  2ndc )
106 is2ndc 21249 . . 3  |-  ( J  e.  2ndc  <->  E. b  e.  TopBases  ( b  ~<_  om  /\  ( topGen `
 b )  =  J ) )
107105, 106sylib 208 . 2  |-  ( ph  ->  E. b  e.  TopBases  ( b  ~<_  om  /\  ( topGen `
 b )  =  J ) )
108104, 107r19.29a 3078 1  |-  ( ph  ->  K  e.  2ndc )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953   cardccrd 8761   topGenctg 16098   Topctop 20698   TopBasesctb 20749    Cn ccn 21028   2ndcc2ndc 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-card 8765  df-acn 8768  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-2ndc 21243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator