Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfun Structured version   Visualization version   Unicode version

Theorem funpartfun 32050
Description: The functional part of  F is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funpartfun  |-  Fun Funpart F

Proof of Theorem funpartfun
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5426 . 2  |-  Rel  ( F  |`  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) )
2 vex 3203 . . . . . . 7  |-  z  e. 
_V
32brres 5402 . . . . . 6  |-  ( x ( F  |`  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) z  <->  ( x F z  /\  x  e. 
dom  ( (Image F  o. Singleton )  i^i  ( _V 
X.  Singletons ) ) ) )
43simplbi 476 . . . . 5  |-  ( x ( F  |`  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) z  ->  x F
z )
5 vex 3203 . . . . . . . 8  |-  y  e. 
_V
65brres 5402 . . . . . . 7  |-  ( x ( F  |`  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) y  <->  ( x F y  /\  x  e. 
dom  ( (Image F  o. Singleton )  i^i  ( _V 
X.  Singletons ) ) ) )
7 ancom 466 . . . . . . . 8  |-  ( ( x F y  /\  x  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) )  <-> 
( x  e.  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  /\  x F y ) )
8 funpartlem 32049 . . . . . . . . 9  |-  ( x  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. w
( F " {
x } )  =  { w } )
98anbi1i 731 . . . . . . . 8  |-  ( ( x  e.  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  /\  x F y )  <->  ( E. w ( F " { x } )  =  { w }  /\  x F y ) )
107, 9bitri 264 . . . . . . 7  |-  ( ( x F y  /\  x  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) )  <-> 
( E. w ( F " { x } )  =  {
w }  /\  x F y ) )
116, 10bitri 264 . . . . . 6  |-  ( x ( F  |`  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) y  <->  ( E. w
( F " {
x } )  =  { w }  /\  x F y ) )
12 df-br 4654 . . . . . . . . . . 11  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
13 df-br 4654 . . . . . . . . . . 11  |-  ( x F z  <->  <. x ,  z >.  e.  F
)
1412, 13anbi12i 733 . . . . . . . . . 10  |-  ( ( x F y  /\  x F z )  <->  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F ) )
15 vex 3203 . . . . . . . . . . . 12  |-  x  e. 
_V
1615, 5elimasn 5490 . . . . . . . . . . 11  |-  ( y  e.  ( F " { x } )  <->  <. x ,  y >.  e.  F )
1715, 2elimasn 5490 . . . . . . . . . . 11  |-  ( z  e.  ( F " { x } )  <->  <. x ,  z >.  e.  F )
1816, 17anbi12i 733 . . . . . . . . . 10  |-  ( ( y  e.  ( F
" { x }
)  /\  z  e.  ( F " { x } ) )  <->  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F ) )
1914, 18bitr4i 267 . . . . . . . . 9  |-  ( ( x F y  /\  x F z )  <->  ( y  e.  ( F " {
x } )  /\  z  e.  ( F " { x } ) ) )
20 eleq2 2690 . . . . . . . . . . 11  |-  ( ( F " { x } )  =  {
w }  ->  (
y  e.  ( F
" { x }
)  <->  y  e.  {
w } ) )
21 eleq2 2690 . . . . . . . . . . 11  |-  ( ( F " { x } )  =  {
w }  ->  (
z  e.  ( F
" { x }
)  <->  z  e.  {
w } ) )
2220, 21anbi12d 747 . . . . . . . . . 10  |-  ( ( F " { x } )  =  {
w }  ->  (
( y  e.  ( F " { x } )  /\  z  e.  ( F " {
x } ) )  <-> 
( y  e.  {
w }  /\  z  e.  { w } ) ) )
23 velsn 4193 . . . . . . . . . . 11  |-  ( y  e.  { w }  <->  y  =  w )
24 velsn 4193 . . . . . . . . . . 11  |-  ( z  e.  { w }  <->  z  =  w )
25 equtr2 1954 . . . . . . . . . . 11  |-  ( ( y  =  w  /\  z  =  w )  ->  y  =  z )
2623, 24, 25syl2anb 496 . . . . . . . . . 10  |-  ( ( y  e.  { w }  /\  z  e.  {
w } )  -> 
y  =  z )
2722, 26syl6bi 243 . . . . . . . . 9  |-  ( ( F " { x } )  =  {
w }  ->  (
( y  e.  ( F " { x } )  /\  z  e.  ( F " {
x } ) )  ->  y  =  z ) )
2819, 27syl5bi 232 . . . . . . . 8  |-  ( ( F " { x } )  =  {
w }  ->  (
( x F y  /\  x F z )  ->  y  =  z ) )
2928exlimiv 1858 . . . . . . 7  |-  ( E. w ( F " { x } )  =  { w }  ->  ( ( x F y  /\  x F z )  ->  y  =  z ) )
3029impl 650 . . . . . 6  |-  ( ( ( E. w ( F " { x } )  =  {
w }  /\  x F y )  /\  x F z )  -> 
y  =  z )
3111, 30sylanb 489 . . . . 5  |-  ( ( x ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) y  /\  x F z )  -> 
y  =  z )
324, 31sylan2 491 . . . 4  |-  ( ( x ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) y  /\  x ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) z )  ->  y  =  z )
3332gen2 1723 . . 3  |-  A. y A. z ( ( x ( F  |`  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) y  /\  x ( F  |`  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) z )  ->  y  =  z )
3433ax-gen 1722 . 2  |-  A. x A. y A. z ( ( x ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V 
X.  Singletons ) ) ) y  /\  x ( F  |`  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) z )  ->  y  =  z )
35 df-funpart 31981 . . . 4  |- Funpart F  =  ( F  |`  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) )
3635funeqi 5909 . . 3  |-  ( Fun Funpart F 
<->  Fun  ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) )
37 dffun2 5898 . . 3  |-  ( Fun  ( F  |`  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) )  <-> 
( Rel  ( F  |` 
dom  ( (Image F  o. Singleton )  i^i  ( _V 
X.  Singletons ) ) )  /\  A. x A. y A. z ( ( x ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) y  /\  x ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) z )  ->  y  =  z ) ) )
3836, 37bitri 264 . 2  |-  ( Fun Funpart F 
<->  ( Rel  ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V 
X.  Singletons ) ) )  /\  A. x A. y A. z ( ( x ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) y  /\  x ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) z )  ->  y  =  z ) ) )
391, 34, 38mpbir2an 955 1  |-  Fun Funpart F
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    i^i cin 3573   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114    |` cres 5116   "cima 5117    o. ccom 5118   Rel wrel 5119   Fun wfun 5882  Singletoncsingle 31945   Singletonscsingles 31946  Imagecimage 31947  Funpartcfunpart 31956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-singleton 31969  df-singles 31970  df-image 31971  df-funpart 31981
This theorem is referenced by:  fullfunfnv  32053  fullfunfv  32054
  Copyright terms: Public domain W3C validator