MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmpreima Structured version   Visualization version   Unicode version

Theorem lmhmpreima 19048
Description: The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmima.x  |-  X  =  ( LSubSp `  S )
lmhmima.y  |-  Y  =  ( LSubSp `  T )
Assertion
Ref Expression
lmhmpreima  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  ( `' F " U )  e.  X )

Proof of Theorem lmhmpreima
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 19031 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
21adantr 481 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  F  e.  ( S  GrpHom  T ) )
3 lmhmlmod2 19032 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
4 lmhmima.y . . . . 5  |-  Y  =  ( LSubSp `  T )
54lsssubg 18957 . . . 4  |-  ( ( T  e.  LMod  /\  U  e.  Y )  ->  U  e.  (SubGrp `  T )
)
63, 5sylan 488 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  U  e.  (SubGrp `  T )
)
7 ghmpreima 17682 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (SubGrp `  T )
)  ->  ( `' F " U )  e.  (SubGrp `  S )
)
82, 6, 7syl2anc 693 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  ( `' F " U )  e.  (SubGrp `  S
) )
9 lmhmlmod1 19033 . . . . . 6  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
109ad2antrr 762 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  S  e.  LMod )
11 simprl 794 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  a  e.  (
Base `  (Scalar `  S
) ) )
12 cnvimass 5485 . . . . . . . 8  |-  ( `' F " U ) 
C_  dom  F
13 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  S )  =  (
Base `  S )
14 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  T )  =  (
Base `  T )
1513, 14lmhmf 19034 . . . . . . . . . 10  |-  ( F  e.  ( S LMHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
1615adantr 481 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  F : ( Base `  S
) --> ( Base `  T
) )
17 fdm 6051 . . . . . . . . 9  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  dom  F  =  ( Base `  S
) )
1816, 17syl 17 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  dom  F  =  ( Base `  S
) )
1912, 18syl5sseq 3653 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  ( `' F " U ) 
C_  ( Base `  S
) )
2019sselda 3603 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  b  e.  ( `' F " U ) )  ->  b  e.  ( Base `  S )
)
2120adantrl 752 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  b  e.  (
Base `  S )
)
22 eqid 2622 . . . . . 6  |-  (Scalar `  S )  =  (Scalar `  S )
23 eqid 2622 . . . . . 6  |-  ( .s
`  S )  =  ( .s `  S
)
24 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
2513, 22, 23, 24lmodvscl 18880 . . . . 5  |-  ( ( S  e.  LMod  /\  a  e.  ( Base `  (Scalar `  S ) )  /\  b  e.  ( Base `  S ) )  -> 
( a ( .s
`  S ) b )  e.  ( Base `  S ) )
2610, 11, 21, 25syl3anc 1326 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  ( a ( .s `  S ) b )  e.  (
Base `  S )
)
27 simpll 790 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  F  e.  ( S LMHom  T ) )
28 eqid 2622 . . . . . . 7  |-  ( .s
`  T )  =  ( .s `  T
)
2922, 24, 13, 23, 28lmhmlin 19035 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  a  e.  ( Base `  (Scalar `  S ) )  /\  b  e.  ( Base `  S ) )  -> 
( F `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( F `  b ) ) )
3027, 11, 21, 29syl3anc 1326 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  ( F `  ( a ( .s
`  S ) b ) )  =  ( a ( .s `  T ) ( F `
 b ) ) )
313ad2antrr 762 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  T  e.  LMod )
32 simplr 792 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  U  e.  Y
)
33 eqid 2622 . . . . . . . . . . . 12  |-  (Scalar `  T )  =  (Scalar `  T )
3422, 33lmhmsca 19030 . . . . . . . . . . 11  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  (Scalar `  S ) )
3534adantr 481 . . . . . . . . . 10  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  (Scalar `  T )  =  (Scalar `  S ) )
3635fveq2d 6195 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  ( Base `  (Scalar `  T
) )  =  (
Base `  (Scalar `  S
) ) )
3736eleq2d 2687 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  (
a  e.  ( Base `  (Scalar `  T )
)  <->  a  e.  (
Base `  (Scalar `  S
) ) ) )
3837biimpar 502 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  a  e.  ( Base `  (Scalar `  S
) ) )  -> 
a  e.  ( Base `  (Scalar `  T )
) )
3938adantrr 753 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  a  e.  (
Base `  (Scalar `  T
) ) )
40 ffun 6048 . . . . . . . . 9  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  Fun  F )
4116, 40syl 17 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  Fun  F )
4241adantr 481 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  Fun  F )
43 simprr 796 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  b  e.  ( `' F " U ) )
44 fvimacnvi 6331 . . . . . . 7  |-  ( ( Fun  F  /\  b  e.  ( `' F " U ) )  -> 
( F `  b
)  e.  U )
4542, 43, 44syl2anc 693 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  ( F `  b )  e.  U
)
46 eqid 2622 . . . . . . 7  |-  ( Base `  (Scalar `  T )
)  =  ( Base `  (Scalar `  T )
)
4733, 28, 46, 4lssvscl 18955 . . . . . 6  |-  ( ( ( T  e.  LMod  /\  U  e.  Y )  /\  ( a  e.  ( Base `  (Scalar `  T ) )  /\  ( F `  b )  e.  U ) )  ->  ( a ( .s `  T ) ( F `  b
) )  e.  U
)
4831, 32, 39, 45, 47syl22anc 1327 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  ( a ( .s `  T ) ( F `  b
) )  e.  U
)
4930, 48eqeltrd 2701 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  ( F `  ( a ( .s
`  S ) b ) )  e.  U
)
50 ffn 6045 . . . . . 6  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
51 elpreima 6337 . . . . . 6  |-  ( F  Fn  ( Base `  S
)  ->  ( (
a ( .s `  S ) b )  e.  ( `' F " U )  <->  ( (
a ( .s `  S ) b )  e.  ( Base `  S
)  /\  ( F `  ( a ( .s
`  S ) b ) )  e.  U
) ) )
5216, 50, 513syl 18 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  (
( a ( .s
`  S ) b )  e.  ( `' F " U )  <-> 
( ( a ( .s `  S ) b )  e.  (
Base `  S )  /\  ( F `  (
a ( .s `  S ) b ) )  e.  U ) ) )
5352adantr 481 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  ( ( a ( .s `  S
) b )  e.  ( `' F " U )  <->  ( (
a ( .s `  S ) b )  e.  ( Base `  S
)  /\  ( F `  ( a ( .s
`  S ) b ) )  e.  U
) ) )
5426, 49, 53mpbir2and 957 . . 3  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  Y )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( `' F " U ) ) )  ->  ( a ( .s `  S ) b )  e.  ( `' F " U ) )
5554ralrimivva 2971 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  A. a  e.  ( Base `  (Scalar `  S ) ) A. b  e.  ( `' F " U ) ( a ( .s `  S ) b )  e.  ( `' F " U ) )
569adantr 481 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  S  e.  LMod )
57 lmhmima.x . . . 4  |-  X  =  ( LSubSp `  S )
5822, 24, 13, 23, 57islss4 18962 . . 3  |-  ( S  e.  LMod  ->  ( ( `' F " U )  e.  X  <->  ( ( `' F " U )  e.  (SubGrp `  S
)  /\  A. a  e.  ( Base `  (Scalar `  S ) ) A. b  e.  ( `' F " U ) ( a ( .s `  S ) b )  e.  ( `' F " U ) ) ) )
5956, 58syl 17 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  (
( `' F " U )  e.  X  <->  ( ( `' F " U )  e.  (SubGrp `  S )  /\  A. a  e.  ( Base `  (Scalar `  S )
) A. b  e.  ( `' F " U ) ( a ( .s `  S
) b )  e.  ( `' F " U ) ) ) )
608, 55, 59mpbir2and 957 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  Y )  ->  ( `' F " U )  e.  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   `'ccnv 5113   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945  SubGrpcsubg 17588    GrpHom cghm 17657   LModclmod 18863   LSubSpclss 18932   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022
This theorem is referenced by:  lmhmlsp  19049  lmhmkerlss  19051  lnmepi  37655
  Copyright terms: Public domain W3C validator