Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb0d Structured version   Visualization version   Unicode version

Theorem fvmptiunrelexplb0d 37976
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb0d.c  |-  C  =  ( r  e.  _V  |->  U_ n  e.  N  ( r ^r  n ) )
fvmptiunrelexplb0d.r  |-  ( ph  ->  R  e.  _V )
fvmptiunrelexplb0d.n  |-  ( ph  ->  N  e.  _V )
fvmptiunrelexplb0d.0  |-  ( ph  ->  0  e.  N )
Assertion
Ref Expression
fvmptiunrelexplb0d  |-  ( ph  ->  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  ( C `  R )
)
Distinct variable groups:    n, r, N    R, n, r
Allowed substitution hints:    ph( n, r)    C( n, r)

Proof of Theorem fvmptiunrelexplb0d
StepHypRef Expression
1 fvmptiunrelexplb0d.0 . . 3  |-  ( ph  ->  0  e.  N )
2 oveq2 6658 . . . 4  |-  ( n  =  0  ->  ( R ^r  n )  =  ( R ^r  0 ) )
32ssiun2s 4564 . . 3  |-  ( 0  e.  N  ->  ( R ^r  0 ) 
C_  U_ n  e.  N  ( R ^r 
n ) )
41, 3syl 17 . 2  |-  ( ph  ->  ( R ^r 
0 )  C_  U_ n  e.  N  ( R ^r  n ) )
5 fvmptiunrelexplb0d.r . . 3  |-  ( ph  ->  R  e.  _V )
6 relexp0g 13762 . . 3  |-  ( R  e.  _V  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
75, 6syl 17 . 2  |-  ( ph  ->  ( R ^r 
0 )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) )
8 fvmptiunrelexplb0d.n . . . . 5  |-  ( ph  ->  N  e.  _V )
9 ovex 6678 . . . . . 6  |-  ( R ^r  n )  e.  _V
109rgenw 2924 . . . . 5  |-  A. n  e.  N  ( R ^r  n )  e.  _V
11 iunexg 7143 . . . . 5  |-  ( ( N  e.  _V  /\  A. n  e.  N  ( R ^r  n )  e.  _V )  ->  U_ n  e.  N  ( R ^r 
n )  e.  _V )
128, 10, 11sylancl 694 . . . 4  |-  ( ph  ->  U_ n  e.  N  ( R ^r 
n )  e.  _V )
13 oveq1 6657 . . . . . 6  |-  ( r  =  R  ->  (
r ^r  n )  =  ( R ^r  n ) )
1413iuneq2d 4547 . . . . 5  |-  ( r  =  R  ->  U_ n  e.  N  ( r ^r  n )  =  U_ n  e.  N  ( R ^r  n ) )
15 fvmptiunrelexplb0d.c . . . . 5  |-  C  =  ( r  e.  _V  |->  U_ n  e.  N  ( r ^r  n ) )
1614, 15fvmptg 6280 . . . 4  |-  ( ( R  e.  _V  /\  U_ n  e.  N  ( R ^r  n )  e.  _V )  ->  ( C `  R
)  =  U_ n  e.  N  ( R ^r  n ) )
175, 12, 16syl2anc 693 . . 3  |-  ( ph  ->  ( C `  R
)  =  U_ n  e.  N  ( R ^r  n ) )
1817eqcomd 2628 . 2  |-  ( ph  ->  U_ n  e.  N  ( R ^r 
n )  =  ( C `  R ) )
194, 7, 183sstr3d 3647 1  |-  ( ph  ->  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  ( C `  R )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574   U_ciun 4520    |-> cmpt 4729    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650   0cc0 9936   ^r crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-n0 11293  df-relexp 13761
This theorem is referenced by:  fvmptiunrelexplb0da  37977  fvrcllb0d  37985  fvrtrcllb0d  38027
  Copyright terms: Public domain W3C validator