![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssiun2s | Structured version Visualization version Unicode version |
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ssiun2s.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssiun2s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2764 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2764 |
. . 3
![]() ![]() ![]() ![]() | |
3 | nfiu1 4550 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | nfss 3596 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | ssiun2s.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | sseq1d 3632 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | ssiun2 4563 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 4, 6, 7 | vtoclgaf 3271 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-iun 4522 |
This theorem is referenced by: onfununi 7438 oaordi 7626 omordi 7646 dffi3 8337 alephordi 8897 domtriomlem 9264 pwxpndom2 9487 wunex2 9560 imasaddvallem 16189 imasvscaval 16198 iundisj2 23317 voliunlem1 23318 volsup 23324 iundisj2fi 29556 bnj906 31000 bnj1137 31063 bnj1408 31104 cvmliftlem10 31276 cvmliftlem13 31278 sstotbnd2 33573 mapdrvallem3 36935 fvmptiunrelexplb0d 37976 fvmptiunrelexplb1d 37978 corclrcl 37999 trclrelexplem 38003 corcltrcl 38031 cotrclrcl 38034 iunincfi 39272 iundjiunlem 40676 caratheodorylem1 40740 ovnhoilem1 40815 |
Copyright terms: Public domain | W3C validator |