MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0g Structured version   Visualization version   Unicode version

Theorem relexp0g 13762
Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp0g  |-  ( R  e.  V  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )

Proof of Theorem relexp0g
Dummy variables  n  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . . 3  |-  ( R  e.  V  ->  (
r  e.  _V ,  n  e.  NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  r ) ) `  n
) ) )  =  ( r  e.  _V ,  n  e.  NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  r ) ) `  n
) ) ) )
2 simprr 796 . . . . 5  |-  ( ( R  e.  V  /\  ( r  =  R  /\  n  =  0 ) )  ->  n  =  0 )
32iftrued 4094 . . . 4  |-  ( ( R  e.  V  /\  ( r  =  R  /\  n  =  0 ) )  ->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  r ) ) `  n
) )  =  (  _I  |`  ( dom  r  u.  ran  r ) ) )
4 dmeq 5324 . . . . . . 7  |-  ( r  =  R  ->  dom  r  =  dom  R )
5 rneq 5351 . . . . . . 7  |-  ( r  =  R  ->  ran  r  =  ran  R )
64, 5uneq12d 3768 . . . . . 6  |-  ( r  =  R  ->  ( dom  r  u.  ran  r )  =  ( dom  R  u.  ran  R ) )
76reseq2d 5396 . . . . 5  |-  ( r  =  R  ->  (  _I  |`  ( dom  r  u.  ran  r ) )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
87ad2antrl 764 . . . 4  |-  ( ( R  e.  V  /\  ( r  =  R  /\  n  =  0 ) )  ->  (  _I  |`  ( dom  r  u.  ran  r ) )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
93, 8eqtrd 2656 . . 3  |-  ( ( R  e.  V  /\  ( r  =  R  /\  n  =  0 ) )  ->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  r ) ) `  n
) )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) )
10 elex 3212 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
11 0nn0 11307 . . . 4  |-  0  e.  NN0
1211a1i 11 . . 3  |-  ( R  e.  V  ->  0  e.  NN0 )
13 dmexg 7097 . . . . 5  |-  ( R  e.  V  ->  dom  R  e.  _V )
14 rnexg 7098 . . . . 5  |-  ( R  e.  V  ->  ran  R  e.  _V )
15 unexg 6959 . . . . 5  |-  ( ( dom  R  e.  _V  /\ 
ran  R  e.  _V )  ->  ( dom  R  u.  ran  R )  e. 
_V )
1613, 14, 15syl2anc 693 . . . 4  |-  ( R  e.  V  ->  ( dom  R  u.  ran  R
)  e.  _V )
17 resiexg 7102 . . . 4  |-  ( ( dom  R  u.  ran  R )  e.  _V  ->  (  _I  |`  ( dom  R  u.  ran  R ) )  e.  _V )
1816, 17syl 17 . . 3  |-  ( R  e.  V  ->  (  _I  |`  ( dom  R  u.  ran  R ) )  e.  _V )
191, 9, 10, 12, 18ovmpt2d 6788 . 2  |-  ( R  e.  V  ->  ( R ( r  e. 
_V ,  n  e. 
NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  r ) ) `
 n ) ) ) 0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
20 df-relexp 13761 . . 3  |- ^r 
=  ( r  e. 
_V ,  n  e. 
NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  r ) ) `
 n ) ) )
21 oveq 6656 . . . . 5  |-  ( ^r  =  ( r  e.  _V ,  n  e. 
NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  r ) ) `
 n ) ) )  ->  ( R ^r  0 )  =  ( R ( r  e.  _V ,  n  e.  NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  r ) ) `  n
) ) ) 0 ) )
2221eqeq1d 2624 . . . 4  |-  ( ^r  =  ( r  e.  _V ,  n  e. 
NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  r ) ) `
 n ) ) )  ->  ( ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) )  <->  ( R
( r  e.  _V ,  n  e.  NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  r ) ) `  n
) ) ) 0 )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) ) )
2322imbi2d 330 . . 3  |-  ( ^r  =  ( r  e.  _V ,  n  e. 
NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  r ) ) `
 n ) ) )  ->  ( ( R  e.  V  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) )  <-> 
( R  e.  V  ->  ( R ( r  e.  _V ,  n  e.  NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  r ) ) `
 n ) ) ) 0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) ) ) )
2420, 23ax-mp 5 . 2  |-  ( ( R  e.  V  -> 
( R ^r 
0 )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) )  <->  ( R  e.  V  ->  ( R ( r  e.  _V ,  n  e.  NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  r ) ) `  n
) ) ) 0 )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) ) )
2519, 24mpbir 221 1  |-  ( R  e.  V  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   ifcif 4086    |-> cmpt 4729    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   NN0cn0 11292    seqcseq 12801   ^r crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-n0 11293  df-relexp 13761
This theorem is referenced by:  relexp0  13763  relexpcnv  13775  relexp0rel  13777  relexpdmg  13782  relexprng  13786  relexpfld  13789  relexpaddg  13793  dfrcl3  37967  fvmptiunrelexplb0d  37976  brfvrcld2  37984  relexp0eq  37993  iunrelexp0  37994  relexpiidm  37996  relexpss1d  37997  relexpmulg  38002  iunrelexpmin2  38004  relexp01min  38005  relexp0a  38008  relexpxpmin  38009  relexpaddss  38010  dfrtrcl3  38025  cotrclrcl  38034
  Copyright terms: Public domain W3C validator