Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvproj Structured version   Visualization version   Unicode version

Theorem fvproj 29899
Description: Value of a function on pairs, given two projections  F and  G. (Contributed by Thierry Arnoux, 30-Dec-2019.)
Hypotheses
Ref Expression
fvproj.h  |-  H  =  ( x  e.  A ,  y  e.  B  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)
fvproj.x  |-  ( ph  ->  X  e.  A )
fvproj.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
fvproj  |-  ( ph  ->  ( H `  <. X ,  Y >. )  =  <. ( F `  X ) ,  ( G `  Y )
>. )
Distinct variable groups:    x, A, y    x, B, y    x, F, y    x, G, y
Allowed substitution hints:    ph( x, y)    H( x, y)    X( x, y)    Y( x, y)

Proof of Theorem fvproj
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . 2  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
2 fvproj.x . . 3  |-  ( ph  ->  X  e.  A )
3 fvproj.y . . 3  |-  ( ph  ->  Y  e.  B )
4 fveq2 6191 . . . . 5  |-  ( a  =  X  ->  ( F `  a )  =  ( F `  X ) )
54opeq1d 4408 . . . 4  |-  ( a  =  X  ->  <. ( F `  a ) ,  ( G `  b ) >.  =  <. ( F `  X ) ,  ( G `  b ) >. )
6 fveq2 6191 . . . . 5  |-  ( b  =  Y  ->  ( G `  b )  =  ( G `  Y ) )
76opeq2d 4409 . . . 4  |-  ( b  =  Y  ->  <. ( F `  X ) ,  ( G `  b ) >.  =  <. ( F `  X ) ,  ( G `  Y ) >. )
8 fvproj.h . . . . 5  |-  H  =  ( x  e.  A ,  y  e.  B  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)
9 fveq2 6191 . . . . . . 7  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
109opeq1d 4408 . . . . . 6  |-  ( x  =  a  ->  <. ( F `  x ) ,  ( G `  y ) >.  =  <. ( F `  a ) ,  ( G `  y ) >. )
11 fveq2 6191 . . . . . . 7  |-  ( y  =  b  ->  ( G `  y )  =  ( G `  b ) )
1211opeq2d 4409 . . . . . 6  |-  ( y  =  b  ->  <. ( F `  a ) ,  ( G `  y ) >.  =  <. ( F `  a ) ,  ( G `  b ) >. )
1310, 12cbvmpt2v 6735 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  <. ( F `  x ) ,  ( G `  y ) >. )  =  ( a  e.  A ,  b  e.  B  |->  <. ( F `  a ) ,  ( G `  b )
>. )
148, 13eqtri 2644 . . . 4  |-  H  =  ( a  e.  A ,  b  e.  B  |-> 
<. ( F `  a
) ,  ( G `
 b ) >.
)
15 opex 4932 . . . 4  |-  <. ( F `  X ) ,  ( G `  Y ) >.  e.  _V
165, 7, 14, 15ovmpt2 6796 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X H Y )  =  <. ( F `  X ) ,  ( G `  Y ) >. )
172, 3, 16syl2anc 693 . 2  |-  ( ph  ->  ( X H Y )  =  <. ( F `  X ) ,  ( G `  Y ) >. )
181, 17syl5eqr 2670 1  |-  ( ph  ->  ( H `  <. X ,  Y >. )  =  <. ( F `  X ) ,  ( G `  Y )
>. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   <.cop 4183   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  fimaproj  29900  qtophaus  29903
  Copyright terms: Public domain W3C validator