Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimaproj Structured version   Visualization version   Unicode version

Theorem fimaproj 29900
Description: Image of a cartesian product for a function on pairs, given two projections  F and  G. (Contributed by Thierry Arnoux, 30-Dec-2019.)
Hypotheses
Ref Expression
fvproj.h  |-  H  =  ( x  e.  A ,  y  e.  B  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)
fimaproj.f  |-  ( ph  ->  F  Fn  A )
fimaproj.g  |-  ( ph  ->  G  Fn  B )
fimaproj.x  |-  ( ph  ->  X  C_  A )
fimaproj.y  |-  ( ph  ->  Y  C_  B )
Assertion
Ref Expression
fimaproj  |-  ( ph  ->  ( H " ( X  X.  Y ) )  =  ( ( F
" X )  X.  ( G " Y
) ) )
Distinct variable groups:    x, A, y    x, B, y    x, F, y    x, G, y   
x, H, y
Allowed substitution hints:    ph( x, y)    X( x, y)    Y( x, y)

Proof of Theorem fimaproj
Dummy variables  a 
b  z  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4932 . . . . 5  |-  <. ( F `  ( 1st `  z ) ) ,  ( G `  ( 2nd `  z ) )
>.  e.  _V
2 fvproj.h . . . . . 6  |-  H  =  ( x  e.  A ,  y  e.  B  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)
3 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
4 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
53, 4op1std 7178 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  ( 1st `  z
)  =  x )
65fveq2d 6195 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( F `  ( 1st `  z ) )  =  ( F `
 x ) )
73, 4op2ndd 7179 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  ( 2nd `  z
)  =  y )
87fveq2d 6195 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( G `  ( 2nd `  z ) )  =  ( G `
 y ) )
96, 8opeq12d 4410 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  <. ( F `  ( 1st `  z ) ) ,  ( G `
 ( 2nd `  z
) ) >.  =  <. ( F `  x ) ,  ( G `  y ) >. )
109mpt2mpt 6752 . . . . . 6  |-  ( z  e.  ( A  X.  B )  |->  <. ( F `  ( 1st `  z ) ) ,  ( G `  ( 2nd `  z ) )
>. )  =  (
x  e.  A , 
y  e.  B  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)
112, 10eqtr4i 2647 . . . . 5  |-  H  =  ( z  e.  ( A  X.  B ) 
|->  <. ( F `  ( 1st `  z ) ) ,  ( G `
 ( 2nd `  z
) ) >. )
121, 11fnmpti 6022 . . . 4  |-  H  Fn  ( A  X.  B
)
13 fimaproj.x . . . . 5  |-  ( ph  ->  X  C_  A )
14 fimaproj.y . . . . 5  |-  ( ph  ->  Y  C_  B )
15 xpss12 5225 . . . . 5  |-  ( ( X  C_  A  /\  Y  C_  B )  -> 
( X  X.  Y
)  C_  ( A  X.  B ) )
1613, 14, 15syl2anc 693 . . . 4  |-  ( ph  ->  ( X  X.  Y
)  C_  ( A  X.  B ) )
17 fvelimab 6253 . . . 4  |-  ( ( H  Fn  ( A  X.  B )  /\  ( X  X.  Y
)  C_  ( A  X.  B ) )  -> 
( c  e.  ( H " ( X  X.  Y ) )  <->  E. z  e.  ( X  X.  Y ) ( H `  z )  =  c ) )
1812, 16, 17sylancr 695 . . 3  |-  ( ph  ->  ( c  e.  ( H " ( X  X.  Y ) )  <->  E. z  e.  ( X  X.  Y ) ( H `  z )  =  c ) )
19 simp-4r 807 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  a  e.  X )
20 simplr 792 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  b  e.  Y )
21 opelxpi 5148 . . . . . . . 8  |-  ( ( a  e.  X  /\  b  e.  Y )  -> 
<. a ,  b >.  e.  ( X  X.  Y
) )
2219, 20, 21syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  <. a ,  b >.  e.  ( X  X.  Y ) )
23 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  ( F `  a )  =  ( 1st `  c
) )
24 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  ( G `  b )  =  ( 2nd `  c
) )
2523, 24opeq12d 4410 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  <. ( F `  a ) ,  ( G `  b ) >.  =  <. ( 1st `  c ) ,  ( 2nd `  c
) >. )
2613ad5antr 770 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  X  C_  A )
2726, 19sseldd 3604 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  a  e.  A )
2814ad5antr 770 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  Y  C_  B )
2928, 20sseldd 3604 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  b  e.  B )
302, 27, 29fvproj 29899 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  ( H `  <. a ,  b >. )  =  <. ( F `  a ) ,  ( G `  b ) >. )
31 1st2nd2 7205 . . . . . . . . 9  |-  ( c  e.  ( ( F
" X )  X.  ( G " Y
) )  ->  c  =  <. ( 1st `  c
) ,  ( 2nd `  c ) >. )
3231ad5antlr 771 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  c  =  <. ( 1st `  c
) ,  ( 2nd `  c ) >. )
3325, 30, 323eqtr4d 2666 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  ( H `  <. a ,  b >. )  =  c )
34 fveq2 6191 . . . . . . . . 9  |-  ( z  =  <. a ,  b
>.  ->  ( H `  z )  =  ( H `  <. a ,  b >. )
)
3534eqeq1d 2624 . . . . . . . 8  |-  ( z  =  <. a ,  b
>.  ->  ( ( H `
 z )  =  c  <->  ( H `  <. a ,  b >.
)  =  c ) )
3635rspcev 3309 . . . . . . 7  |-  ( (
<. a ,  b >.  e.  ( X  X.  Y
)  /\  ( H `  <. a ,  b
>. )  =  c
)  ->  E. z  e.  ( X  X.  Y
) ( H `  z )  =  c )
3722, 33, 36syl2anc 693 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  /\  a  e.  X )  /\  ( F `  a )  =  ( 1st `  c
) )  /\  b  e.  Y )  /\  ( G `  b )  =  ( 2nd `  c
) )  ->  E. z  e.  ( X  X.  Y
) ( H `  z )  =  c )
38 fimaproj.g . . . . . . . . 9  |-  ( ph  ->  G  Fn  B )
3938ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  c  e.  ( ( F " X )  X.  ( G " Y
) ) )  /\  a  e.  X )  /\  ( F `  a
)  =  ( 1st `  c ) )  ->  G  Fn  B )
40 fnfun 5988 . . . . . . . 8  |-  ( G  Fn  B  ->  Fun  G )
4139, 40syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  c  e.  ( ( F " X )  X.  ( G " Y
) ) )  /\  a  e.  X )  /\  ( F `  a
)  =  ( 1st `  c ) )  ->  Fun  G )
42 xp2nd 7199 . . . . . . . 8  |-  ( c  e.  ( ( F
" X )  X.  ( G " Y
) )  ->  ( 2nd `  c )  e.  ( G " Y
) )
4342ad3antlr 767 . . . . . . 7  |-  ( ( ( ( ph  /\  c  e.  ( ( F " X )  X.  ( G " Y
) ) )  /\  a  e.  X )  /\  ( F `  a
)  =  ( 1st `  c ) )  -> 
( 2nd `  c
)  e.  ( G
" Y ) )
44 fvelima 6248 . . . . . . 7  |-  ( ( Fun  G  /\  ( 2nd `  c )  e.  ( G " Y
) )  ->  E. b  e.  Y  ( G `  b )  =  ( 2nd `  c ) )
4541, 43, 44syl2anc 693 . . . . . 6  |-  ( ( ( ( ph  /\  c  e.  ( ( F " X )  X.  ( G " Y
) ) )  /\  a  e.  X )  /\  ( F `  a
)  =  ( 1st `  c ) )  ->  E. b  e.  Y  ( G `  b )  =  ( 2nd `  c
) )
4637, 45r19.29a 3078 . . . . 5  |-  ( ( ( ( ph  /\  c  e.  ( ( F " X )  X.  ( G " Y
) ) )  /\  a  e.  X )  /\  ( F `  a
)  =  ( 1st `  c ) )  ->  E. z  e.  ( X  X.  Y ) ( H `  z )  =  c )
47 fimaproj.f . . . . . . . 8  |-  ( ph  ->  F  Fn  A )
4847adantr 481 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  ->  F  Fn  A )
49 fnfun 5988 . . . . . . 7  |-  ( F  Fn  A  ->  Fun  F )
5048, 49syl 17 . . . . . 6  |-  ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  ->  Fun  F )
51 xp1st 7198 . . . . . . 7  |-  ( c  e.  ( ( F
" X )  X.  ( G " Y
) )  ->  ( 1st `  c )  e.  ( F " X
) )
5251adantl 482 . . . . . 6  |-  ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  ->  ( 1st `  c )  e.  ( F " X ) )
53 fvelima 6248 . . . . . 6  |-  ( ( Fun  F  /\  ( 1st `  c )  e.  ( F " X
) )  ->  E. a  e.  X  ( F `  a )  =  ( 1st `  c ) )
5450, 52, 53syl2anc 693 . . . . 5  |-  ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  ->  E. a  e.  X  ( F `  a )  =  ( 1st `  c ) )
5546, 54r19.29a 3078 . . . 4  |-  ( (
ph  /\  c  e.  ( ( F " X )  X.  ( G " Y ) ) )  ->  E. z  e.  ( X  X.  Y
) ( H `  z )  =  c )
56 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
( H `  z
)  =  c )
5716ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
( X  X.  Y
)  C_  ( A  X.  B ) )
58 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
z  e.  ( X  X.  Y ) )
5957, 58sseldd 3604 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
z  e.  ( A  X.  B ) )
6011fvmpt2 6291 . . . . . . . 8  |-  ( ( z  e.  ( A  X.  B )  /\  <.
( F `  ( 1st `  z ) ) ,  ( G `  ( 2nd `  z ) ) >.  e.  _V )  ->  ( H `  z )  =  <. ( F `  ( 1st `  z ) ) ,  ( G `  ( 2nd `  z ) )
>. )
6159, 1, 60sylancl 694 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
( H `  z
)  =  <. ( F `  ( 1st `  z ) ) ,  ( G `  ( 2nd `  z ) )
>. )
6247ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  ->  F  Fn  A )
6313ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  ->  X  C_  A )
64 xp1st 7198 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
6558, 64syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
( 1st `  z
)  e.  X )
66 fnfvima 6496 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  X  C_  A  /\  ( 1st `  z )  e.  X )  ->  ( F `  ( 1st `  z ) )  e.  ( F " X
) )
6762, 63, 65, 66syl3anc 1326 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
( F `  ( 1st `  z ) )  e.  ( F " X ) )
6838ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  ->  G  Fn  B )
6914ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  ->  Y  C_  B )
70 xp2nd 7199 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  ( 2nd `  z )  e.  Y )
7158, 70syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
( 2nd `  z
)  e.  Y )
72 fnfvima 6496 . . . . . . . . 9  |-  ( ( G  Fn  B  /\  Y  C_  B  /\  ( 2nd `  z )  e.  Y )  ->  ( G `  ( 2nd `  z ) )  e.  ( G " Y
) )
7368, 69, 71, 72syl3anc 1326 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
( G `  ( 2nd `  z ) )  e.  ( G " Y ) )
74 opelxpi 5148 . . . . . . . 8  |-  ( ( ( F `  ( 1st `  z ) )  e.  ( F " X )  /\  ( G `  ( 2nd `  z ) )  e.  ( G " Y
) )  ->  <. ( F `  ( 1st `  z ) ) ,  ( G `  ( 2nd `  z ) )
>.  e.  ( ( F
" X )  X.  ( G " Y
) ) )
7567, 73, 74syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  ->  <. ( F `  ( 1st `  z ) ) ,  ( G `  ( 2nd `  z ) ) >.  e.  (
( F " X
)  X.  ( G
" Y ) ) )
7661, 75eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
( H `  z
)  e.  ( ( F " X )  X.  ( G " Y ) ) )
7756, 76eqeltrrd 2702 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( X  X.  Y
) )  /\  ( H `  z )  =  c )  -> 
c  e.  ( ( F " X )  X.  ( G " Y ) ) )
7877r19.29an 3077 . . . 4  |-  ( (
ph  /\  E. z  e.  ( X  X.  Y
) ( H `  z )  =  c )  ->  c  e.  ( ( F " X )  X.  ( G " Y ) ) )
7955, 78impbida 877 . . 3  |-  ( ph  ->  ( c  e.  ( ( F " X
)  X.  ( G
" Y ) )  <->  E. z  e.  ( X  X.  Y ) ( H `  z )  =  c ) )
8018, 79bitr4d 271 . 2  |-  ( ph  ->  ( c  e.  ( H " ( X  X.  Y ) )  <-> 
c  e.  ( ( F " X )  X.  ( G " Y ) ) ) )
8180eqrdv 2620 1  |-  ( ph  ->  ( H " ( X  X.  Y ) )  =  ( ( F
" X )  X.  ( G " Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   <.cop 4183    |-> cmpt 4729    X. cxp 5112   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  txomap  29901
  Copyright terms: Public domain W3C validator