MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gafo Structured version   Visualization version   Unicode version

Theorem gafo 17729
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaf.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
gafo  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) -onto-> Y )

Proof of Theorem gafo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaf.1 . . 3  |-  X  =  ( Base `  G
)
21gaf 17728 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
3 gagrp 17725 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
43adantr 481 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  G  e.  Grp )
5 eqid 2622 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
61, 5grpidcl 17450 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
74, 6syl 17 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  ( 0g `  G )  e.  X )
8 simpr 477 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  x  e.  Y )
95gagrpid 17727 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  (
( 0g `  G
)  .(+)  x )  =  x )
109eqcomd 2628 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  x  =  ( ( 0g
`  G )  .(+)  x ) )
11 rspceov 6692 . . . 4  |-  ( ( ( 0g `  G
)  e.  X  /\  x  e.  Y  /\  x  =  ( ( 0g `  G )  .(+)  x ) )  ->  E. y  e.  X  E. z  e.  Y  x  =  ( y  .(+)  z ) )
127, 8, 10, 11syl3anc 1326 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  E. y  e.  X  E. z  e.  Y  x  =  ( y  .(+)  z ) )
1312ralrimiva 2966 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  A. x  e.  Y  E. y  e.  X  E. z  e.  Y  x  =  ( y  .(+)  z ) )
14 foov 6808 . 2  |-  (  .(+)  : ( X  X.  Y
) -onto-> Y  <->  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  E. y  e.  X  E. z  e.  Y  x  =  ( y  .(+)  z ) ) )
152, 13, 14sylanbrc 698 1  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) -onto-> Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    X. cxp 5112   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Basecbs 15857   0gc0g 16100   Grpcgrp 17422    GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ga 17723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator