MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaass Structured version   Visualization version   Unicode version

Theorem gaass 17730
Description: An "associative" property for group actions. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gaass.1  |-  X  =  ( Base `  G
)
gaass.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
gaass  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  Y )
)  ->  ( ( A  .+  B )  .(+)  C )  =  ( A 
.(+)  ( B  .(+)  C ) ) )

Proof of Theorem gaass
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaass.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
2 gaass.2 . . . . . . . 8  |-  .+  =  ( +g  `  G )
3 eqid 2622 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
41, 2, 3isga 17724 . . . . . . 7  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( ( ( 0g `  G )  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
54simprbi 480 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (
( 0g `  G
)  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) ) )
65simprd 479 . . . . 5  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  A. x  e.  Y  ( ( ( 0g
`  G )  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) )
7 simpr 477 . . . . . 6  |-  ( ( ( ( 0g `  G )  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) )  ->  A. y  e.  X  A. z  e.  X  ( ( y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x )
) )
87ralimi 2952 . . . . 5  |-  ( A. x  e.  Y  (
( ( 0g `  G )  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) )  ->  A. x  e.  Y  A. y  e.  X  A. z  e.  X  ( ( y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x )
) )
96, 8syl 17 . . . 4  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  A. x  e.  Y  A. y  e.  X  A. z  e.  X  ( ( y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x )
) )
10 oveq2 6658 . . . . . 6  |-  ( x  =  C  ->  (
( y  .+  z
)  .(+)  x )  =  ( ( y  .+  z )  .(+)  C ) )
11 oveq2 6658 . . . . . . 7  |-  ( x  =  C  ->  (
z  .(+)  x )  =  ( z  .(+)  C ) )
1211oveq2d 6666 . . . . . 6  |-  ( x  =  C  ->  (
y  .(+)  ( z  .(+)  x ) )  =  ( y  .(+)  ( z  .(+)  C ) ) )
1310, 12eqeq12d 2637 . . . . 5  |-  ( x  =  C  ->  (
( ( y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x )
)  <->  ( ( y 
.+  z )  .(+)  C )  =  ( y 
.(+)  ( z  .(+)  C ) ) ) )
14 oveq1 6657 . . . . . . 7  |-  ( y  =  A  ->  (
y  .+  z )  =  ( A  .+  z ) )
1514oveq1d 6665 . . . . . 6  |-  ( y  =  A  ->  (
( y  .+  z
)  .(+)  C )  =  ( ( A  .+  z )  .(+)  C ) )
16 oveq1 6657 . . . . . 6  |-  ( y  =  A  ->  (
y  .(+)  ( z  .(+)  C ) )  =  ( A  .(+)  ( z  .(+)  C ) ) )
1715, 16eqeq12d 2637 . . . . 5  |-  ( y  =  A  ->  (
( ( y  .+  z )  .(+)  C )  =  ( y  .(+)  ( z  .(+)  C )
)  <->  ( ( A 
.+  z )  .(+)  C )  =  ( A 
.(+)  ( z  .(+)  C ) ) ) )
18 oveq2 6658 . . . . . . 7  |-  ( z  =  B  ->  ( A  .+  z )  =  ( A  .+  B
) )
1918oveq1d 6665 . . . . . 6  |-  ( z  =  B  ->  (
( A  .+  z
)  .(+)  C )  =  ( ( A  .+  B )  .(+)  C ) )
20 oveq1 6657 . . . . . . 7  |-  ( z  =  B  ->  (
z  .(+)  C )  =  ( B  .(+)  C ) )
2120oveq2d 6666 . . . . . 6  |-  ( z  =  B  ->  ( A  .(+)  ( z  .(+)  C ) )  =  ( A  .(+)  ( B  .(+) 
C ) ) )
2219, 21eqeq12d 2637 . . . . 5  |-  ( z  =  B  ->  (
( ( A  .+  z )  .(+)  C )  =  ( A  .(+)  ( z  .(+)  C )
)  <->  ( ( A 
.+  B )  .(+)  C )  =  ( A 
.(+)  ( B  .(+)  C ) ) ) )
2313, 17, 22rspc3v 3325 . . . 4  |-  ( ( C  e.  Y  /\  A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  Y  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) )  ->  (
( A  .+  B
)  .(+)  C )  =  ( A  .(+)  ( B 
.(+)  C ) ) ) )
249, 23syl5 34 . . 3  |-  ( ( C  e.  Y  /\  A  e.  X  /\  B  e.  X )  ->  (  .(+)  e.  ( G  GrpAct  Y )  -> 
( ( A  .+  B )  .(+)  C )  =  ( A  .(+)  ( B  .(+)  C )
) ) )
25243coml 1272 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  Y )  ->  (  .(+)  e.  ( G  GrpAct  Y )  -> 
( ( A  .+  B )  .(+)  C )  =  ( A  .(+)  ( B  .(+)  C )
) ) )
2625impcom 446 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  Y )
)  ->  ( ( A  .+  B )  .(+)  C )  =  ( A 
.(+)  ( B  .(+)  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422    GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ga 17723
This theorem is referenced by:  gass  17734  gasubg  17735  galcan  17737  gacan  17738  gaorber  17741  gastacl  17742  gastacos  17743  galactghm  17823
  Copyright terms: Public domain W3C validator